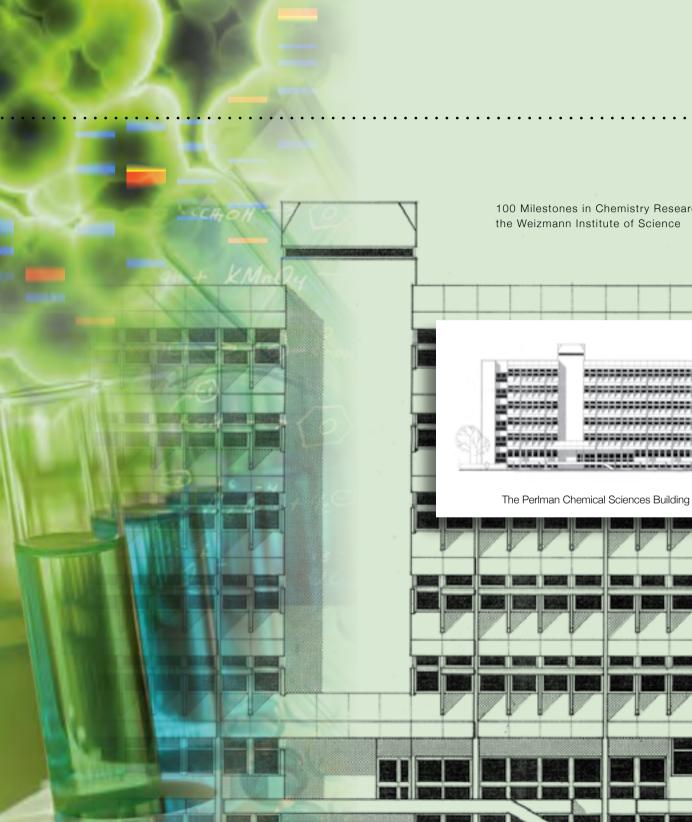
LOO Milestones

in Chemistry Research at the Weizmann Institute of Science



0 2 Cu*

Cot +

100 Milestones in Chemistry Research at the Weizmann Institute of Science

........

C THE MOST ALL-PENETRATING SPIRIT BEFORE WHICH WILL OPEN THE POSSIBILITY OF TILTING NOT TABLES, BUT PLANETS, IS THE SPIRIT OF FREE HUMAN INQUIRY. **)**

> DMITRI MENDELEEV, (1834-1907) BEST KNOWN FOR HIS PERIODIC TABLE OF THE ELEMENTS

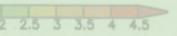
hemistry was the first field of research at the Weizmann Institute of Science, and it will play a significant role in shaping the Institute's future. The Institute's founder and first President, Dr. Chaim Weizmann, was a chemist who strongly believed in the value of basic research; but he also

knew how to seize an opportunity and turn scientific findings into useful applications. He said: "I trust and feel sure in my heart that science will bring to this land both peace and a renewal of its youth, creating here the springs of a new spiritual and material life. I speak of both science for its own sake and science as a means to an end." But Weizmann, the visionary who foresaw the need for first-rate science in the land of Israel, could not have imagined the Institute – now one of the world's top multidisciplinary research centers – that has grown up around the original chemistry labs. If he were to visit the Institute today and peek into the various labs where physics, genetics, robotics or brain research is conducted, he might be amazed at the scientific questions we are daring to address. If he were to enter the chemistry labs, he would be doubly amazed – both by the advances that enable scientists to control chemical processes and delve into the secrets of nature with ever greater precision, and by the breadth of a field that currently encompasses everything from global weather phenomena to the atomic structure of biological molecules.

The Faculty of Chemistry was officially created in 1971, when all the Institute's various departments were organized into five faculties. Coinciding with the 100th anniversary of Dr. Weizmann's birth, the faculty experienced a "Big Bang": A significant, generous gift, made by Harold Perlman of Chicago in memory of his parents several years before, in 1969, enabled the establishment of the Perlman Institute of Chemical Sciences and the construction of the Perlman Chemical Sciences Building, dedicated in 1974. The six-story edifice's 7,435 sq. meters, home to the Isotope Research and Chemical Physics Departments, housed some of the most advanced chemistry labs of that day.

Harold Perlman was a philanthropic visionary and pioneer who understood the central role that materials science would come to play in chemical research; indeed, over the next 40 years this

120E 140E 160E 180 18


branch of chemistry would become an important part of the institute he founded. The building and its labs provided the impetus Institute chemists needed to propel their research to the frontiers of global science, and they made outstanding contributions to the fields of nuclear magnetic resonance, liquid crystals, semiconductor research, complex materials and more.

A short time later, labs for a new Materials and Interfaces Department were installed in the building, where they continue to produce top-notch research to this day. Truly, the impact of the scientific activity taking place in the Perlman Chemical Sciences Building has gone far beyond the physical walls, leading to the development of additional research fields at the Weizmann Institute. Among these are the Structural Biology Department – which can boast a number of impressive achievements in recent years – and the Environmental Sciences and Energy Research Department.

Looking back over the record of the achievements of Weizmann Institute scientists in the various areas of chemistry, the creation of the Perlman Institute of Chemical Sciences and the Perlman Chemical Sciences Building stands out as a landmark. After that point in time, one can see chemical research branching out in all sorts of new directions. Like the spot on a tree trunk where the strongest limbs begin spreading out, giving shade to an entire patch of ground, the completion of institute and building in 1974 represents the generation of multiple new directions in the evolution of the Faculty of Chemistry, enabling its varied branches to spread and grow.

Prof. Daniel Zajfman President Weizmann Institute of Science

DW 140W 120W 100W 80W

he Daniel Sieff Research Institute was founded by British philanthropists and friends of Dr. Chaim Weizmann, Israel and Rebecca Sieff, in memory of their son. The building featured up-to-date labs and equipment, including Weizmann's lab and office. Part of the Organic Chemistry Department is still housed in the historic building, as is Dr. Weizmann's memorial laboratory.

NATURE

at D

No. 3579. JUNE 4, 1938

en the electrodes are bombarded by positive ions.

argon or nitrogen or moreory, as initical negative ion curves are p pe of positive ion. The probable ese peaks are about 16, 24, 32, oh set of curves, using positi-

rogen or mercury, i (possibly C_sH) is a any of the other pocess energy and ine the positive ion operly degassed an aks are detectab courn conditions cacase new results at crogen are form ported being probaygen in the surf nitrogen positive low.

The apparatus was d several runs take

alysis curves were now entire ose obtained in argon, nitrop pour. The main peaks in oxy as number 16 and 32, represe to O⁺ peak was very intense, b gh as it was in the other gases. creased by a factor of about 65. , which was so intense in an ercury vapour, was barely percept e other peaks.

The oxygen was then all punbetrodes bombarded with positive removing the liquid air traps, e analysis curves of negative for ament was still O^2 , being 24 tiby other peak. For the ions probetrode E_1 of our apparatus¹, the

ove of mass numbers 24 and 32. Re-flashing the ament considerably reduced the O- peak from the ament, but had no marked effect on the ions on E_1 .

The results in exygen, which are in agreement ith those already dished, appear to show that th O and O, are produced by positive ions of exygen pturing two electrons from the surface, as was evicually suggested. However, these ions can also When a high yield of light negative ions is proy of the number of Hg ions formed be bly decreased. This may account

group of Institute chemists found that amino acids, the building blocks of proteins in all living things, can be broken down when mixed into water and exposed to ultraviolet light. The initial byproduct of this breakdown was ammonia (NH₃). The scientists noted that some amino acids broke down faster than others, while those with phenyl groups also underwent side reactions "leading to an insoluble coating on the quartz walls and to the formation of an unpleasantly smelling volatile product." They surmised that amino acids in green plants might be broken down in a similar way by simple chemical reactions involving water and light.

 $\begin{array}{c|c} & \mathbf{R}_{\mathbf{y}} \\ & & \mathbf{C} \\ & & \mathbf{R}_{\mathbf{y}} \end{array} \xrightarrow{\mathbf{C}} \mathbf{C} \\ & & \mathbf{C} \\ & & \mathbf{C} \\ & & \mathbf{R}_{\mathbf{y}} \end{array} \xrightarrow{\mathbf{R}_{\mathbf{y}}} \mathbf{C} \\ & & \mathbf{R}_{\mathbf{y}} \end{array}$

In both cases the characteristic reaction is the migration of the hydrogen atom H* of the alcoholic R₂.

good deal of research in the Daniel Sieff Research Institute concerned the uses of natural and agricultural products, with the aim of strengthening the country's nascent economy. Its scientists applied the fermentation techniques developed by Dr. Weizmann to such materials as orange and grapefruit peels, creating useful chemical compounds and substances with new properties. In other research, fennel and anise oils were found to contain compounds that were chemically similar to the hormone estrogen, and these were proposed as a source of synthetic estrogen.

1.9.4.0

P etroleum products were an important subject of Institute research; its scientists looked for ways of improving the refining process and of producing new industrial chemicals and materials. Methods for "cracking" the oil to create higher octane fuel were investigated, and an antiknock compound developed. Institute research also led to a method for producing a type of synthetic rubber.

uring WWII, Institute scientists adapted their research to the creation of drugs and other substances that had been imported from Germany. When the war began, the scientists' efforts turned to the production of the quinine substitutes Atabrine and plasmoquine for treating the malaria that still plagued the population in Palestine and the Allied troops serving in the region. Another drug to come out of Institute labs at that time was Evipan, a barbituratebased painkiller. A summary of research from that period reported the development of methods for the production of 22 new compounds, including "anti-malarials, disinfectants, hypnotics, hormones, etc."

he Institute envisioned by Dr. Weizmann was to be a regional center for scientific advancement, its scientists working in fruitful collaboration with labs in such respected institutions as the University of Cairo. As late as 1947, Institute scientists were publishing the results of research conducted in collaboration with chemists at the American University of Beirut.

he Daniel Sieff Research Institute officially became the Weizmann Institute of Science, in honor of Dr. Weizmann's 75th birthday. The new Institute was initially made up of five departments: two chemistry (isotope research and polymer research), together with biophysics, biochemistry and microbiology, and applied mathematics. The latest in scientific equipment – including a mass spectrometer and an X-ray diffraction unit – was installed in the Institute's labs.

Nov., 1950

Ncap

ACTIVI

stects

TABLE I MEASURED DIRLECTRIC CONSTANTS, I DICES AND DENSITY SOLV

Benzene at 80° Toluene at 80° Toluene at 90° c-Methylnapht

DIELECTRIC

120

123

mong the thousands of chemical compounds explored in the labs of the Institute were polycyclic spiropyrans - chemicals that change their color when exposed to light or heat. These substances were interesting because the change was reversible: Turn off the light, and they revert back to the original color. A team of Institute scientists teased out the chemistry of this change, finding how the distribution of electric charges on the spiropyran molecules affected the color change. These color-changing chemicals became the basis of ground-breaking work on optical data storage by Weizmann Institute scientists.

CIII
IIIA
M
C-CH-CH
CH0
шв
С-сн-сн
10
CH, CH,
CT_C=CH-CH
CH, O
COLLECH-CH obtained from
CH. CH.

employed. No corrections for solvent polarization18

had to be introduced. The densities were measured in a

cnometer of about 7 ml. capacity. The

ms were both measured experimentally and n bond refraction data.¹⁴ and the average

w104	A+104	w104	∆s10 ⁴
Compound III in benzene		Compound III in a-	
0	-3	methylnaphthalene	
0.11	6	0	-5
.21	8	0.60	17
.36	12	1.14	85
.47	19	1.54	50
. 55	23	2,21	71
.67	25	2.75	97
.78	27	3.49	100
		0.05	2.00

The data for the solvents used are recorded in Table I.

The results are summarized in Tables II and III. Here $\Delta \epsilon$, Δn^2 and Δd are defined by $\Delta_4 = \epsilon - \epsilon_0$; $\Delta n^2 = n^2 - n_0^2$; $\Delta d = d - d_0$. They were measured with an accuracy of ± 0.0002 , ± 0.0004 and ± 0.00003 , respectively. R_D denotes the molecular refraction calculated from bond-refraction data. Reversible Formation and Eradication of Colors by Irradiation at Low Temperatures. A Photochemical Memory Model

10 ---

ultraviolet light at 213°K, phenomenon (named, te ism'') in compounds rela-

ries and spiropy of publications compounds wh and photochrom chromic colors a

When the cotion are maintature they remaultraviolet irrarates of decayare temperatur ture of the soluthe original coklu a prelimin colored form oviolet irradiati which it is staberadicated by cycle can be r

solution. This phenor compounds and aim of this pap

CHEC

10

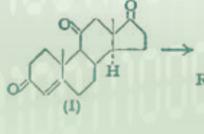
suggestion from a member of the Electronics Department to an Institute chemist led to one of the seminal papers in the field of optical data storage. The two scientists realized that chemical compounds that change their color under a beam of light - and remain stable until changed back again with a second action - might perform high-speed memory storage functions similar to the electronic computer, then in its infancy. The chemist proposed a memory storage system based on the properties of these compounds, and he invented the term "photochromism," still applied to the field today.

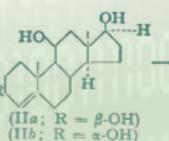
400 500 400 300 200 For the filter of the f

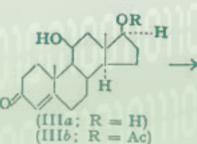
m with the 365 mu group of the above

he Weizmann Institute was a world leader in isotope research, and it boasted a unique apparatus for separating isotopes – elements that are heavier or lighter than the regular ones, due to a non-standard number of neutrons in the atomic nucleus. The Weizmann facility produced heavy oxygen, and for many years, it supplied most of the world's demand for this isotope. Heavy oxygen is used in a wide variety of research in chemistry, physics, biology and medicine, and in PET scan technology.

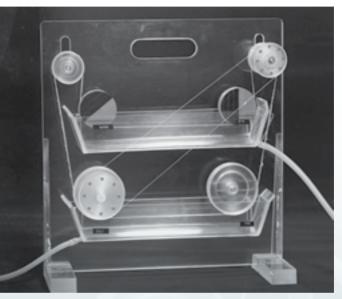

1.9.5.4


eizmann Institute scientists constructed a high-resolution nuclear magnetic resonance (NMR) spectrometer, one of the first such devices to be built in the world and a forerunner of present-day magnetic resonance imaging (MRI) scanners. The machine was used for pioneering spectroscopic studies, as well as to investigate molecular structure and dynamics.


EIZAC, the first electronic computer in the Middle East, and one of the first in the world, was a coup for the mathematics department, but the Institute's chemists were among the first to benefit from it. Crystallographers and polymer scientists, for instance, found they could do several weeks worth of calculations in a mere hour or so.


mo

13



11-Ketotestosterone (IVa) was prepared simply and in excel monoacetate (IIIb) by oxidation and subsequent hydrolysis.

1.2.5.5

ne of the dreams of Institute scientists was to build functioning "mechanochemical machines" that would work in the same way as living tissue. A team of scientists created one such device out of collagen fibers, which are found in animal connective tissue. When subjected to dissolved salt, the fibers expanded or contracted, thereby operating a set of wheels. Though the dream was ahead of its time, the research advanced the study of the properties of living tissues, enabling the scientists to gain crucial insight into the dynamics of biological materials.

OPENING CEREMONY

of the

INTERNATIONAL SYMPOSIUM ON M ROY SC : CP MISTRY

THE

THE

A landmark international symposium on Macromolecular Chemistry was held at the Institute. This meeting signaled the rising standing of the Institute chemists in the global science arena, especially their "pioneering work on polyelectrolyte chemistry." Touted uses for the new synthetic polymers highlighted at the symposium included blood clotting, soil conditioning and films for reservoirs to prevent evaporation.

CHIMIE MACR

LA COMMISSION DES DE L'UNION INTERNATIONALE I ET DU WEIZMANN INSTITU

OPENING CEREMONY of the

INTERNATIONAL SYMPOSIUM ON MACROMOLECULAR CHEMISTRY

UNDER THE AUSPICES OF THE COMMISSION ON MACROMOLECULES OF TERNATIONAL UNION OF FURE AND APPLIED CHEMISTRY E WEIZMANN INSTITUTE OF SCIENCE, REHOVOT

and

DEDICATION

of the MICHAEL AND ANNA WIX AUDITORIUM THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT

Tuesday, April 3, 1956, 10.00 a.m.

OUVERTURE

SYMPOSIUM INTERNATIONAL DE CHIMIE MACROMOLECULAIRE

SOUS LES AUSPICES DE LA COMMISSION DES MACROMOLECULES DE L'UNION INTERNATIONALE DE CHIMIE PURE ET APPLIQUEE ET DU WEIZMANN INSTITUTE OF SCIENCE, REHOVOT

et DEDICATION

MICHAEL AND ANNA WIX AUDITORIUM THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT

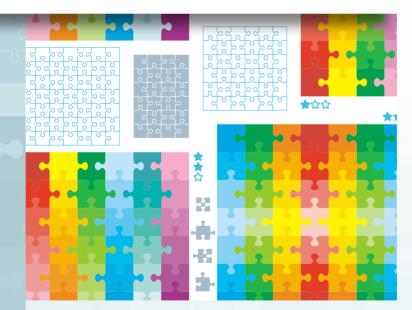
Mardi, 3 avril 1956, 10.00 h.

MICHAEL AND ANNA WIX AUDITORIUM THE WEIZMANN INSTITUTE OF SCIENCE, REHOVOT

DEDIC

Mardi, 3 avril 1956, 10.00 h.

15


ow does one measure the molecular weight of a new polymeric substance when it's dissolved in a solution? This is not a trivial question, as accurate measurement is the basis of nearly all chemical experimentation and theory. An Institute scientist attempting to determine the molecular weight of polyelectrolytes in solution using a light scattering technique found that the method would only work if he added a pinch of cooking salt to the solution. He then provided the chemical explanation as to why this should be so.

hroughout the Institute's early decades, Weizmann chemists investigated the structure, properties, and performance of polymers - long molecules consisting of strings of smaller subunits. (DNA, proteins, polysaccharides and synthetic plastic materials are all polymers.) Among other things, the scientists studied the properties of electrically-charged polymers (polyelectrolytes) and their interactions with ions and other small molecules. Practical inventions to come out of this research included a spray-on polymer solution for preserving fruit, special plastics for covering greenhouses, fire retardants, improved polyesters, pesticides and specialized membranes.

he still-growing Weizmann Institute underwent reorganization as new fields of research opened up. The chemistry departments in 1960 included photochemistry, organic chemistry, isotope research, x-ray crystallography and infrared spectroscopy. The NMR Department was absorbed into Nuclear Physics in 1962, and a Chemical Physics Department was established.

Studies on the Antitumor Effect of Cucurbitacins*

VILY, P

MA ST HAT, AND DAVID LAVIE

(Rogoff Medical

SIMON GITTER

The car dihydroela ture, and cucurbitae Three c inhibition Sarcoma 1 Morpho mation wi

centrations of elatericia tively higher concentrat ing capacity of these cel measured by Warburg 1

The cucurbitacins are a group led substances which have b arious species of the Cucurbits be species of this plant famil aterium and Citrullus colocynth

or their cathartic properties since remote times, in the last few years the cucurbitations have been be object of more detailed studies, and complete cructures have been proposed for elatericin A(I), latericin B(IIa), and elaterin (IIb) (8) (Chart 1). If are tetracylic triterpenes,¹ differing in the ature of their 19 genated functions in ring Ae.g., I and IIa), or in the tertiary acetoxy group ccurring in the side chain (IIb), as described in

P lants and animals are natural storehouses for all kinds of chemical compounds that affect the human body. Over the years, Institute scientists investigated a number of plant and insect compounds, developing methods to isolate substances with drug-like properties. These included thebaine, extracted from an Asian poppy, which was used as a starting material for the preparation of the anti-addiction drug Naloxone and the analgesic drug codeine. Later research in this area yielded natural substances with anti-cancer and anti-retroviral properties.

oxyl of elaterin legradation exm A, the side d, and *trans*-4-

hydroxy-4-methylpent-2-enoic acid (4-HMP) was obtained (10).

Some of the above described cucurbitacins had been screened previously for their antitumor activity (13). In the present study their influence both on tumor growth *in vito* and on viability of tumor cells after incubation *in vitro* was investigated.

MATERIALS AND METHODS

new building was erected adjoining the Daniel Sieff Research Institute to accommodate advances in chemistry research. Originally named for Ernst. D. Bergmann, the first scientific director of the Institute, the building housed the Organic Chemistry Department.

1.3

aplid

polycrystalline

We wished cules of 3 co ferences in r faces during respectively, termined in structed by si within the sta ven materials that are "set in crystal" can be chemically reactive. Institute chemists made pioneering strides in the field of topochemistry – the chemistry of reactions that take place in crystallized solids. Among other things, they showed that the shape of the molecular crystalline structure determines the outcome of the reaction. This body of work has since become fundamental to many branches of chemistry and solid-state engineering.

to translational symme guest molecules of 3 is, of 5a to 5b, *i.e.*, the op primarily reflect the na responsible for cyclodir we prepared, by growt glass bulbs,³ large (1-6 taining 15% of 3 in 1, radiated as above. The consistently found to crystals affording dextro material, $[\alpha]\mathbf{D} + \mathbf{or} =$ optically active 5 to a le many-fold enhancement nickel reductive degrada $(\pm),5$ [or(-),5] led to (-

(+)-5 [or(-)-5] led to (-)-6 [or (-)-6], [a]D ca. 10°, ^{cr} while acetylation of (+)-5 afforded (+)-7, ^{cr} [a]D ca. 5°.

Raney-No.

is highly relevan biological origin Acknowledgme illi Albania de como de

ting diagram of a mixed cry tructure of 13/3 showing the i e enantiomeric photodimers 5

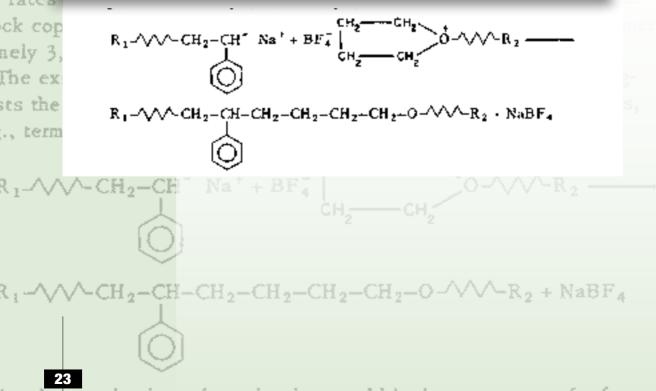
the optical yield of thind the absolute configure of the crystal (*i.e.*, whether the s in Figure 1 or as in its ant cyclobutane photog t crystal, or one having a determined. When a findicate which face of a final bonding distance to a final bonding distance simple production of the cyclobutane photog termined.

active samples from optically inactiv is highly relevant to current hypo biological origin of optical activity of

Acknowledgment. We thank Profe and F. L. Hirshfeld for valuable di

1965

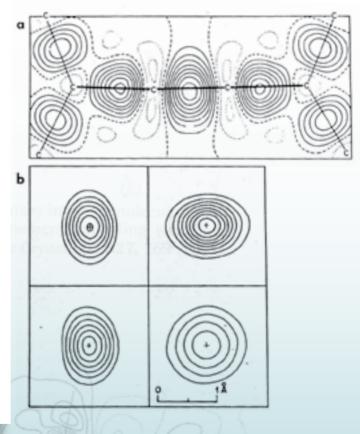
S ynthesizing antibiotic and other drug compounds for therapeutic use means they should be produced cheaply and efficiently on an industrial scale. Institute scientists took a novel approach, developing a range of chemically active polymers that are used for the preparation of various substances, including antibacterial compounds and biologically active peptides.



MUTUAL TERMINATION OF ANIONIC AND CATIONIC ''LIVING'' POLYMERS*

The most import by Szwarc, Levy, a mechanism This ferent fun by the ad (2).

Until re tionic me anion usu on the po proper co the rates block cop namely 3, The ex gests the e.g., term S ome of the polymer research at the Institute involved "living polymers" – chain-like molecules that continue to grow as long as monomers are available, or until the process is halted by a terminating chemical reaction. Institute chemists found a new way of terminating the polymer chain growth by mixing two types of living polymers, one with a negative charge at the end of the chain (anionic), and the other with a positive charge (cationic). This resulted in a new type of "block co-polymer" having different properties than either of its constituent polymers.


mioni diving" polymers described

Another mechanism of termination would be by proton transfer from the cationic to the anionic end. This would result in this case, in a mix-

rre 8.9. Fumaric ac nventional differen ng. Contour interv

he chemical bonds between the atoms in molecules are functions of the electrons that are shared between them. Understanding the nature of these bonds goes to the very heart of chemistry. An Institute chemist developed a method for "dissecting" molecules to reveal the distribution of their electrons and thus how the various atoms bind to each other. This method, which provided scientists with a deep understanding of chemical processes, has become a standard tool in a number of areas of chemistry.

24

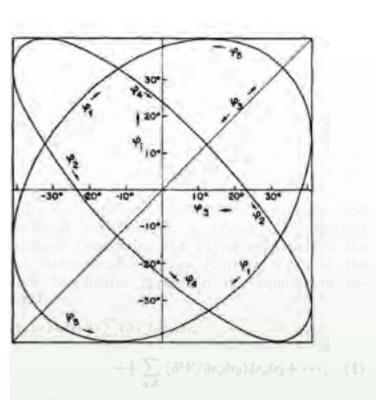
JALI

dΙγ

er

z sysi

to o


series of medium rings, C₅-C₁₀, v. some of the energy parameters in or agreement with experimental data formations and enthalpies. Rece revised his calculations for C₂-C₁₀.

cally his energy p tions to methyl-si the modes of scheme^s was appl study of solvoly polycyclic bromie and Hirsch⁹ used a analysis of a num alkanes. The con Lifson⁴ resolved analysis of 1,1,3 ing that the crys two conformers. enthalpy differen cyclodecane and j son, and Bartell^{ay} general family o functions to calc extended by sever. of polypeptides an

In the present of of empirical energy actions in alkane m calculation of equi spectra, strain energy from the same energy alkane series from *n*-butane. The ot

cientists often investigate the structure and reactivity of substances at the molecular level and need to guantify the forces that hold molecules together or those involved in various molecular reactions. Institute scientists developed a method, called the "consistent force field." for calculating the forces exerted within the molecule. This method makes it possible to elucidate the structure of molecules, as well as to calculate the binding energy of their components. In biological systems, it allows researchers to determine and quantify the structure of a protein or to compute the binding energy needed to activate molecules such as enzymes.

parameters by a least-squares method to obtain best fit with experimental data related to all above-mentioned calculation. With optimized parameters, the degree of success of our calculations depends only on the assumed functional form of the intramolecular energy. By examining a number of suggested energy functions we learn much about their properties, and by selecting the fittest we improve systematically the capability of empirical and semicompirical energy functions to

ONSISTENT CONFORMATIONAL

BRATIONAL ANALYSIS

attribute simultaneously the appropriate physical aning to each term in the series.

A. The First Term Represents the Strain Energy

Our computer program calculates $V(\mathbf{r})$ for a given conformation \mathbf{r} for any cycloalkane or *n*-alkane molecule, from a set of energy functions.

B. Equilibrium Conformation

The vanishing of the second term, i.e., the solution