Are you a journalist? Please sign up here for our press releases
Subscribe to our monthly newsletter:
A living cell, from one point of view, is a sort of sprawling protein factory that can churn out thousands of different proteins to order. Prof. Roy Bar-Ziv of the Weizmann Institute’s Materials and Interfaces Department is building on the basic idea of creating “artificial cells” that might, in the future, enable us to control the production of proteins or other complex biological processes.
The system, designed by PhD students Eyal Karzbrun and Alexandra Tayar in Bar-Ziv’s lab, in collaboration with Prof. Vincent Noireaux of the University of Minnesota, comprises multiple compartments etched onto a biochip. These tiny artificial cells, each a mere millionth of a meter in depth, are connected via thin capillary tubes, creating a network that allows the diffusion of biological substances throughout the system. The instructions – DNA designed by the scientists – are inserted into the cells, along with the protein-making machinery and raw materials – both provided by an extract of the bacterium E. coli.
The genetic sequence the researchers had inserted contained two regulatory genes – basically “on” and “off” switches. Much like their real counterparts, the artificial cells are linked through a capillary system to a feeding channel that enabled them to absorb nutrients and exchange materials; and they, in turn, created proteins in a periodic fashion.