New Stem Cells Go Back Further

English

One of the obstacles to employing human embryonic stem cells for medical use lies in their very promise: They are born to rapidly differentiate into other cell types. Until now, scientists have not been able to efficiently keep embryonic stem cells in their pristine stem state. The alternative that has been proposed to embryonic stem cells – reprogrammed adult cells called induced pluripotent stem cells (iPS cells) – have similar limitations. Though these can differentiate into many different cell types, they retain signs of “priming,” – commitment to specific cell lineages. A team at the Weizmann Institute of Science has now taken a large step toward removing that obstacle: They have created iPS cells that are completely “reset” to the earliest possible state and maintained them in that state. Among other things, this research may, in the future, pave the way toward the ability to grow transplant organs to order.


Since they were first created in 2006, iPS cells have been touted as an ethical and practical substitute for embryonic stem cells. They are made by inserting four genes into the genomes of such adult cells as skin cells. This turns back the developmental clock almost all the way – but not completely – to an embryonic-stem-cell-like state. Dr. Jacob Hanna of the Institute’s Molecular Genetics Department and his team, including research students Ohad Gafni and Leehee Weinberger, and researchers in the Israel National Center for Personalized Medicine, realized that inserting genes to reset the stem cells was not enough. One also has to put the cells’ drive to differentiate on hold.

One hint that this might be possible was the fact that the mouse embryonic stem cells used in many lab experiments are easily preserved in their “naïve,” unprimed state, and they don’t present some of the other problems that human ones do. Hanna and his group realized that if they could understand how the mouse embryonic stem cells manage to refrain from differentiating in the lab, they could apply it to the human versions. Through lab experiments and genetic analysis, they worked out a “treatment” for the iPS cells in the lab dish to damp down the genetic pathway for differentiation.  

Next, they injected the treated iPS cells into mouse blastocysts – early-stage embryos containing only a few cells. If the team’s iPS cells were truly naïve, as well as viable, they would grow together with the mouse cells. Adding a fluorescent marker to the iPS cells enabled them to trace what happened to those stem cells in the developing embryo. Fluorescent imaging after ten days (they were not grown to term) indeed revealed that the embryos contained both mouse and human tissues.
 
Hanna: “These cells correspond to the earliest stages of human embryonic stem cells that have been isolated. We managed to freeze what is essentially a very fleeting situation and to produce a new, naïve, pluripotent state in stem cells.” These findings may have many uses in biomedical research, specifically in gene therapy research, as well as genetic engineering. Hanna and his team plan to continue investigating the “humanized” mouse embryos, in which they hope to find ways of directing the development of human tissue into functional organs.
 
Human naïve iPS-derived cells (yellow/green) integrating into different tissues of a developing host mouse embryo (red cells)
 
Dr. Jacob Hanna’s research is supported by Pascal and Ilana Mantoux, France/Israel; the Leona M. and Harry B. Helmsley Charitable Trust; the Sir Charles Clore Research Prize; the Benoziyo Endowment Fund for the Advancement of Science; Erica A. Drake and Robert Drake; the European Research Council; the Fritz Thyssen Stiftung; the Israel Cancer Research Fund; the BIRAX program; and the Israel Science Foundation (regular, BIKURA and I-CORE programs).
 
Life Sciences
English

How Good Cells Turn Bad

English

(l-r) Amir Bar, Dr. Amos Tanay, Netta Mendelson-Cohen, Prof. Varda Rotter, Dr. Zohar Mukamel, Naomi Goldfinger, Gilad Landan and Dr. Alina Molchadsky

 

 

 

 

 

 

 

 

 

 

 

 

How does a cell turn “bad” – from a well-behaved individual that respects boundaries and only divides when necessary, into a cancerous one whose reproduction is out of control? Is this antisocial conduct simply a product of bad genes, or does something else push it into the life of a cancer cell?
 

Until recently, genes were assumed to play the sole driving role in this scenario. Indeed, for cancer to develop, a number of genetic mutations that accumulate as cells live and divide are necessary. But researchers have realized that mutations are not the whole story: They cannot fully explain how a cell makes the transition from average good citizen to cancer.
 
One idea that has been gaining ground in recent years is that epigenetic (literally, “above the genes”) changes taking place in parallel with mutations can play an important role in the initiation and development of cancer. Epigenetic modifications affect the genes and can be passed on to further generations of cancer cells. One important epigenetic mechanism is the DNA methylation system, in which biochemical groups are attached to various genes, thereby “disabling” them. In normal cells, this system helps prevent genes from being expressed in the wrong time or place.
 
Methylation has been well studied – mostly focusing on its role in embryogenesis. It is commonly believed that the majority of changes in methylation take place before and during embryonic development, after which cells and their descendents become locked into a pattern. Yet it was also known that cancer cells tend to have different methylation patterns from healthy ones. How do these changes come about? Dr. Amos Tanay of the Computer Science and Applied Mathematics, and Biological Regulation Departments, and Prof. Varda Rotter of the Molecular Cell Biology Department decided to explore the methylation of genes in healthy cells as they age and divide, to see if they could learn something about changes that might promote cancer.
 
 
(l-r) Dr. Amos Tanay and Prof. Varda Rotter
 
The two scientists and their groups combined methods and techniques from a number of different fields: Tanay is a computational biologist who has been developing computer-based methods of extracting significant information from huge quantities of genetic data, and Rotter is a cancer cell biologist who has developed original lab methods to investigate the genetics of cancer. Gilad Landan, a joint Ph.D. student with Tanay and Rotter, together with Dr. Zohar Mukamel, Netta Mendelson Cohen and Amir Bar from Tanay’s group, Naomi Goldfinger and Dr. Alina Molchadsky from Rotter’s group, and Dr. Einav Nili Gal-Yam, an oncologist in the Talpiot program at the Sheba Medical Center, created cultures of healthy, “immortal” cells that kept dividing past extreme old age – up to 300 rounds of cell division. The team developed new techniques that permitted the follow-up and analysis of methylation in the genomes of the cultured cells as they evolved over that period.

Among other things, their observations challenged the notion that methylation in cells is fixed early on and more or less maintained in a stable state throughout life. Patterns of methylation in the healthy cells accumulated changes almost from the onset of the experiment. The alterations were basically random, so that the methylation sites in cells that started out identical diverged more and more as division continued. In general, however, the number of genes that had methyl groups attached to them increased dramatically over time. By the 300th division, the cells had highly abnormal methylation patterns and many were on the verge of becoming cancerous. These findings appeared recently in Nature Genetics.

Tanay says that an older cell or one that has undergone too many rounds of division may still mostly function because certain genes that are in active, day-to-day use have mechanisms that prevent methylation. But it might find itself unable to react properly to the kinds of DNA damage or mutation that can initiate cancer growth because many other genes – for instance those that are activated only in emergencies – are disabled by random epigenetic markers. In other words, creeping epigenetic changes may aid and abet the cells’ transition to a cancerous lifestyle because they can have a “calcifying” effect on the genome: Like an aging joint, the genome may lose its flexibility as added methyl groups slow it down.

Tanay and Rotter and their teams are currently exploring the implications of these findings in cancer patients. They want to know more about methylation patterns in the tumor cells taken from those patients, to see if the shifts they identified in the lab match up. They also  suspect that the epigenetic changes may also help the cells keep up their bad behavior on their way down the cancerous path. Among other things, the researchers are now asking how the different methylation patterns might affect tumor cells’ response to chemotherapy.
 
Prof. Varda Rotter's research is supported by the Adelis Foundation; the Leir Charitable Foundations; and the Women's Health Research Center, which she heads. Prof. Rotter is the incumbent of the Norman and Helen Asher Professorial Chair of Cancer Research.

Dr. Amos Tanay's research is supported by Pascal and Ilana Mantoux, Israel/France; the Wolfson Family Charitable Trust; the Rachel and Shaul Peles Fund for Hormone Research; and the estate of Evelyn Wellner. Dr. Tanay is the incumbent of the Robert Edward and Roselyn Rich Manson Career Development Chair in Perpetuity.
 
 
(l-r) Amir Bar, Dr. Amos Tanay, Netta Mendelson-Cohen, Prof. Varda Rotter, Dr. Zohar Mukamel, Naomi Goldfinger, Gilad Landan and Dr. Alina Molchadsky
Life Sciences
English

Scale Models

English
 
Weizmann Institute scientists have added a significant piece to the puzzle of scaling – how patterns stay in sync with size as an embryo or organism grows and develops. In a new study appearing in Current Biology, Institute scientists Profs. Naama Barkai and Ben-Zion Shilo and research student Danny Ben-Zvi of the Molecular Genetics Department have shown how scaling works in developing fruit fly wings – in which the vein structure stays perfectly proportioned – and their findings should be applicable to many different examples of development, including human embryonic development.

The scientists knew that patterning relies on morphogens – substances that are secreted by a small number of cells in the center of the developing embryo, and from there, diffuse outward. As morphogens disperse, the levels drop off in the cells further from the center, and thus the concentration relays a signal to the developing cells about their place and function in the growing organism. But such a morphogen diffuses from the center at the same rate in a small organism as in a larger one, and thus would not effect scaling on its own.

Several years ago, the researchers found a molecule in frog embryos that is synthesized at the edges and diffuses inward. This second molecule also functions as a morphogen, and it is the redistribution of this molecule that finally determines the morphogen signal each developing cell receives, in a way that takes embryo size into consideration.

Next, Barkai and Ben-Zvi created a theoretical model, called an expansion-repression model, in which an expander molecule on the growing edge aids in the distribution of the central morphogen, which eventually represses the synthesis of the expander molecule at the edge. The model suggests just how this interplay between expansion created at the edge and repression moving from the center results in a pattern built to scale.

Ben-Zvi, Barkai and Shilo have now brought the theoretical model back into the lab, carrying out experiments on fruit fly larvae, in which wing patterning already begins in small structures called wing discs.

The scientists collected fruit fly larvae of varying sizes and, using a quantitative method they developed, checked the distribution of concentrations of a morphogen called Dpp. Then, they eliminated another molecule called Pentagone – which they suspected of playing the role of expander – from the developing wing disc and checked again. Their findings showed that the wings in the unaltered fruit flies revealed the morphogen scaling activity predicted by the model, its signals being proportionate to wing size. In contrast, in the flies without Pentagone the Dpp morphogen was distributed in the same way in all the wings, regardless of their relative sizes. Thus, they were able to show that Pentagone is, indeed, an expansion molecule and that the expansion-repression paradigm they had formulated can be applied to such differing organisms as frogs and fruit flies.

Shilo: “The beauty of this research lies in the way it seamlessly weaves a theoretical model into experimental biology. With this fresh, new approach to investigating scaling, rather than searching for complex molecular mechanisms, we can begin by looking for this relatively simple and universal paradigm.”   
 
Prof. Naama Barkai’s research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Jeanne and Joseph Nissim Foundation for Life Sciences Research; the Carolito Stiftung; Lorna Scherzer, Canada; and the Minna James Heineman Stiftung. Prof. Barkai is the incumbent of the Lorna Greenberg Scherzer Professorial Chair.

Prof. Ben-Zion Shilo’s research is supported by the Jeanne and Joseph Nissim Foundation for Life Sciences Research; the Dr. Josef Cohn Minerva Center for Biomembrane Research; the Carolito Stiftung; La Fondation Raphael et Regina Levy; the estate of Georg Galai; and the Mary Ralph Designated Philanthropic Fund. Prof. Shilo is the incumbent of the Hilda and Cecil Lewis Professorial Chair of Molecular Genetics.


 
Life Sciences
English

Extra Copies of a Gene Carry Extra Risk

English
For Some Genes, Too Much is Almost as Bad as Too Little
 

Is more of a good thing better? A gene known as LIS1 is crucial for ensuring the proper placement of neurons in the developing brain. When an LIS1 gene is missing, brains fail to develop the characteristic folds; babies with lissencephaly or ‘smooth brain’ are born severely mentally retarded. But new research by Prof. Orly Reiner of the Institute’s Molecular Genetics Department, which recently appeared in Nature Genetics, shows that having extra LIS1 genes can cause problems as well.

 

Reiner was the first to discover LIS1’s tie to lissencephaly, in 1993. Their latest study shows that it works by helping to determine polarity in the cell – how the various organelles are arranged inside the cell as well as where it connects to neighboring cells. Neurons alter their polarity several times during development, especially when they take on an elongated shape and migrate to new locations in the brain.

 

But what if, rather than too little, the body has too much LIS1? One of the surprises to come out of the recent spate of post-human-genome research is the number of genes that can be repeated or deleted in an individual’s genome. Most extra copies of genes may be no more harmful than a computer backup disk, but scientists have been finding that some repeats can cause disease.

 

Research associate Dr. Tamar Sapir and lab technician Talia Levy, working in Reiner’s lab, developed a mouse model in which additional LIS1 protein was produced in the brain. The scientists found that the brains of these mice were a bit smaller than average. On closer inspection, they discovered a range of subtle changes in cell polarity and movement: Nuclei within the proliferating zone tended to move faster, but with less control; rates of cell death were higher; and various factors in the cell became more disordered.

 

Reiner then asked whether their findings might apply to humans. Together with Jim Lupski and Drs. Weimin Bi and Oleg A. Shchelochkov of Baylor College of Medicine in Houston, Texas, they searched through blood samples using a technique that matches a patient’s DNA with control DNA to identify additions or deletions in its sequence. They identified seven individuals with extra copies of either LIS1 or adjacent genes that are also involved in brain development. All suffered developmental abnormalities. Two of the patients – children with a second LIS1 gene – had previously been diagnosed with failure to thrive and delayed development, and were found to have small brain sizes. A third, who had three copies of the gene, was mentally retarded and suffered from bone deformation as well.

 

Reiner: ‘Several brain diseases, including schizophrenia, epilepsy and autism, have been linked to faulty neuron migration, and recent research has hinted that some of these may involve variations in gene number. Our study is the first to demonstrate the effects of the duplication of a single gene in a mouse model and tie it to a new ‘copy number variation’ human disease.’


Prof. Orly Reiner’s research is supported by the Nella and Leon Benoziyo Center for Neurological Diseases; the Kekst Family Center for Medical Genetics; the David and Fela Shapell Family Center for Genetic Disorders Research; the PW-Iris Foundation; and the PW- Jani.M  Research Fund. Prof. Reiner is the incumbent of the Bernstein-Mason Chair of Neurochemistry.


For the scientific paper, please see:  http://www.nature.com/ng/journal/v41/n2/pdf/ng.302.pdf

 

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

 

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.
Life Sciences
English

Birth of an Enzyme

English
Scientists succeed in designing artificial enzymes that also undergo 'evolution in a test tube'
 

Mankind triumphed in a recent 'competition' against nature when scientists succeeded in creating a new type of enzyme for a reaction for which no naturally occurring enzyme has evolved. This achievement opens the door to the development of a variety of potential applications in medicine and industry.

 

Enzymes are, without a doubt, a valuable model for understanding the intricate works of nature. These molecular machines – which without them, life would not exist – are responsible for initiating chemical reactions within the body. Millions of years of natural selection have fine-tuned the activity of such enzymes, allowing chemical reactions to take place millions of times faster. In order to create artificial enzymes, a comprehensive understanding of the structure of natural enzymes, their mode of action, as well as advanced protein engineering techniques is needed. A team of scientists from the University of Washington, Seattle, and the Weizmann Institute of Science, Israel, made a crucial breakthrough toward this endeavor. Their findings have recently been published in the scientific journal Nature.

 

Enzymes are biological catalysts that are made from a string of amino acids, which fold into specific three-dimensional protein structures. The scientists’ aim was to create an enzyme for a specific chemical reaction whereby a proton (a positively charged hydrogen atom) is removed from carbon – a highly demanding reaction and rate-determining step in numerous processes for which no enzymes currently exist, but which would be beneficial in helping to speed up the reaction. During the first heat of the 'competition,' the research team designed the 'heart' of the enzymatic machine – the active site – where the chemical reactions take place. 

 

The second heat of the competition was to design the backbone of the enzyme, i.e., to determine the sequence of the 200 amino acids that make up the structure of the protein. This was no easy feat seeing as there is an infinite number of ways to arrange 20 different types of amino acids into strings of 200. But in practice, only a limited number of possibilities are available as the sequence of amino acids determines the structure of the enzyme, which in turn, determines its specific activity. Prof. David Baker of the University of Washington, Seattle, used novel computational methodologies to scan tens of thousands of sequence possibilities, identifying about 60 computationally designed enzymes that had the potential to carry out the intended activity. Of these 60 sequences tested, eight advanced to the next 'round' having showed biological activity. Of these remaining eight, three sequences got through to the 'final stage,' which proved to be the most active. Drs. Orly Dym and Shira Albeck of the Weizmann Institute’s Structural Biology Department solved the structure of one of the final contestants, and confirmed that the enzymes created were almost identical to the predicted computational design.

 

But the efficiency of the new enzymes could not compare to that of naturally-occurring enzymes that have evolved over millions of years. This is where 'mankind' was on the verge of losing the competition to nature, until Prof. Dan Tawfik and research student Olga Khersonsky of the Weizmann Institute’s Biological Chemistry Department stepped in, whereby they developed a method allowing the synthetic enzymes to undergo 'evolution in a test tube' that mimics natural evolution. Their method is based on repeated rounds of random mutations followed by scanning the mutant enzymes to find the ones who showed the most improvement in efficiency.

 

These enzymes then underwent further rounds of mutation and screening. Results show that it takes only seven rounds of evolution in a test tube to improve the enzymes’ efficiency 200-fold compared with the efficiency of the computer-designed template, resulting in a million-fold increase in reaction rates compared with those that take place in the absence of an enzyme.

 

The scientists found that the mutations occurring in the area surrounding the enzyme’s active site caused minor structural changes, which in turn, resulted in an increased chemical reaction rate. These mutations therefore seem to correct shortcomings in the computational design, by shedding light on what might be lacking in the original designs. Other mutations increased the flexibility of the enzymes, which helped to increase the speed of substrate release from the active site.
 
'Reproducing the breathtaking performances of natural enzymes is a daunting task, but the combination of computational design and molecular in vitro evolution opens up new horizons in the creation of synthetic enzymes,' says Tawfik. 'Thanks to this research, we have gained a better understanding of the structure of enzymes as well as their mode of action. This, in turn, will allow us to design and create enzymes that nature itself had not ‘thought’ of, which could be used in various processes, such as neutralizing poisons, developing medicines, as well as for many further potential applications.'  

 

Prof. Dan Tawfik's research is supported by the J & R Center for Scientific Research; the Jack Wolgin Prize for Scientific Excellence; Mr. and Mrs. Yossie Hollander, Israel; Mr. Rowland Schaefer, New York, NY; and the estate of Fannie Sherr, New York, NY.  Prof.  Tawfik is the incumbent of the Elaine Blond Career Development Chair.

 

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.


Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il/, and are also available at http://www.eurekalert.org/.

Life Sciences
English

Key Player in Embryonic Muscle Development

English
Weizmann Institute scientists discover: A KEY PLAYER IN EMBRYONIC MUSCLE DEVELOPMENT
 
In the future, this finding may help in designing new methods for healing injured and diseased muscle tissue using stem cells
 
Muscle fibers are large cells that contain many nuclei. They begin, like all animal cells, as naive embryonic cells. These cells differentiate, producing intermediate cells called myoblasts that are now destined to become muscle. New myoblasts then seek out other myoblasts, and when they find each other, they stick together like best friends. In the final stage of muscle fiber development, the cell membranes of attached myoblasts open up and fuse together, forming one large, unified cell. 
     
How myoblasts identify other myoblasts and how they cling together had been established, but the way that the cell membranes fuse into one has remained a mystery. Now, a study by Weizmann Institute scientists has shed light on this mystery. The study was carried out by research student Rada Massarwa and lab technician Shari Carmon under the guidance of Dr. Eyal Schejter and Prof. Ben-Zion Shilo of the Institute’s Molecular Genetics Department, with help from Dr. Vera Shinder of the Electron Microscopy Unit. The cells’ system for identifying other myoblasts and sticking to them consists of protein molecules that poke through the outer cell membrane – one end pointing out and the other extending into the body of the cell. These recognition proteins anchor the cells together, but what makes myoblasts open their doors to each other and merge into one cell?
 
The scientists discovered that a protein called WIP, which attaches to the internal part of the myoblast recognition protein, plays a key role in muscle cell fusion. WIP communicates between the recognition protein and the cell’s internal skeleton, which is made of tough, elastic fibers composed of a protein called actin. The skeletal actin applies force to the abutting cell membranes, opening and enlarging holes that allow the cells to merge. The Weizmann Institute team found that the WIP protein is activated by an external signal once myoblasts identify and attach to each other. Only when it receives this signal does WIP hook the actin fibers in the skeleton up to the myoblast recognition protein, allowing cell fusion to proceed.
 
The WIP protein has been conserved evolutionarily. In other words, versions of it exist in all animals, from microorganisms such as yeast, through worms and flies, and up to humans. This means that the protein fulfills a function necessary for life but also, say the scientists, because of this conservation, studies conducted on this protein in fruit flies can teach us quite a bit about how it works in humans.
 
To further examine the role of WIP, the scientists knocked out the gene responsible for producing it in fruit flies. In flies that did not make the protein, normal muscle fibers were not produced. WIP-deficient myoblasts continued to identify and cozy up to one another, but fusion between cell membranes did not take place, and multi-nucleated muscle fibers failed to form. An article describing these findings appeared today in the journal Developmental Cell.
 
This study, which improves our understanding of the process of muscle formation, may assist in the future, in devising new and advanced methods for healing muscle. Specifically, these might include ways of fusing stem cells with injured or degenerated muscle fibers. 
 
Fusion between cell membranes plays a key role in development of different kinds of bone cells, placental cells and immune system cells, as well as in fertilization and in the penetration of viruses into living cells. Understanding how membrane fusion takes place may one day lead to the development of ways to encourage the process when it’s needed or hinder it when it’s likely to cause harm.
 
Prof. Ben-Zion Shilo’s research is supported by the M. D. Moross Institute for Cancer Research; the Y. Leon Benoziyo Institute for Molecular Medicine; the Clore Center for Biological Physics; the Dr. Josef Cohn Minerva Center for Biomembrane Research; the J & R Center for Scientific Research; and the Jeanne and Joseph Nissim Foundation for Life Sciences Research.
Prof. Shilo is the incumbent of the Hilda and Cecil Lewis Professorial Chair in Molecular Genetics.
 
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.
 
Weizmann Institute news releases are posted on the World Wide Web at

http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Life Sciences
English

Weizmann Institute scientists discover: A Molecular Security Mechanism for Keeping Mutations in Check

English
Everyone knows mutations – genetic mistakes in DNA, the material of heredity – are bad: The more mutations in the cell’s DNA, the higher the risk of cancer developing.

 

But in the last few years it has become clear that the very processes that generate mutations, if they take place at a relatively low frequency, can actually protect us from cancer. How does the body know how to keep these processes in check, making sure they don’t rocket out of control, causing a sharp rise in our cancer risk? A preliminary answer to this question has come out of research carried out by Prof. Zvi Livneh and research student Sharon Avkin, along with research student Leanne Toube and Dr. Ziv Sevilya of the Biological Chemistry Department, and Prof. Moshe Oren of the Molecular Cell Biology Department, along with two American colleagues. The results of their study appeared recently in the scientific journal Molecular Cell.

 

The instruments of DNA copying (which takes place prior to cell division) are members of a family of enzymes called DNA polymerase. DNA polymerase travels along one strand of the double stranded molecule, reading each bit of genetic material and copying as it goes along, to create new DNA that will be passed on to the daughter cell at cell division. This enzyme can be a stickler for accuracy – if it runs into damage from radiation or exposure to harmful substances on the DNA strand, it can stop in its tracks, unable to continue copying. A stoppage of this sort spells death for the cell. But not all damage to DNA is critical and, to avoid the wholesale death of cells, a second type of DNA polymerase, one that is more 'careless' and can improvise when it hits a snag, evolved in the cell. 'Error-prone DNA repair,' as it’s called, is based on a compromise: The cell lives, but at the price of allowing genetic mutations to be carried over in cell division.

 

The body’s solution to minimizing mutations is to have no fewer than ten different 'careless' enzymes. Although this may seem paradoxical – intuitively, more careless enzymes should mean more mutations – each of these enzymes is tailored to deal with certain specifics types of DNA damage. This specialization is what keeps the level of mutation, and thus the cancer risk, low.  But the existence of this variety of specialist enzymes implies precise regulation of the system – otherwise copying by the careless enzymes might get out of control and lead to an unhealthy proliferation of mutations.

 

Prof. Livneh and his team recently discovered a security mechanism that prevents such proliferation of mutations. This mechanism allows the right enzyme to go to work at the right time, and only when it’s needed. The main components in this system are the proteins p53 and p21. p53, named 'molecule of the year' several years ago by Science, is well known for its central role in reining in cancer processes in the cell. In this case, the proteins seem to act as supervisors, taming the careless enzymes and keeping them in careful check. The scientists’ research showed that if the functioning of p53 or its relative, p21, is harmed, the activities of the careless enzymes can go into overdrive, leading to more mutations.

The actual mechanism works with a sort of molecular clamp that holds the DNA copying enzyme onto the strand of DNA. When the enzyme encounters DNA damage, a small molecule called ubiquitin attaches to the clamp. The ubiquitin, in this case, serves to anchor replacement DNA polymerase molecules – careless ones – to the clamp. p53 enters the picture when it is alerted to the damage and causes p21 to be created. The p21 then acts as a sort of facilitator, helping to fasten the proper ubiquitin in place and clearing stalled DNA polymerase out of the way so its replacement can get to work. Thus, these two proteins manage to help the body’s cells maintain a crucial balance, allowing them to divide and multiply while keeping the mutation rate, and therefore the cancer risk, to a minimum.

 

Prof. Zvi Livneh’s research is supported by the M.D. Moross Institute for Cancer Research; the Dr. Josef Cohn Minerva Center for Biomembrane Research; the J & R Center for Scientific Research; the Levine Institute of Applied Science; the Flight Attendant Medical Research Institute; and the Israel Science Foundation. Prof. Livneh is the incumbent of the Maxwell Ellis Professorial Chair in Biomedical Research.


The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,500 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

 

 

Weizmann Institute news releases are posted on the World Wide Web at
http://wis-wander.weizmann.ac.il/, and are also available at http://www.eurekalert.org/.

Life Sciences
English

Embryonic Law and Order

English

A team of scientists at the Weizmann Institute of Science reveals how fruit fly embryos impose order in early development

 

Soon after fertilization, the cells in an embryo, which have been dividing furiously from the start, begin to take on different forms and to separate into layers that will eventually give rise to the organism’s various tissues and organs. But dividing and changing shape, two distinct processes, cannot happen simultaneously. Directing activities so each takes place in turn becomes critical when the pressure is on to do both. A team of Weizmann Institute scientists recently found how a cellular “traffic cop” temporarily halts cell division so other processes can proceed. 
 
In an article published in Current Biology, Prof. Talila Volk of the Weizmann Institute’s Molecular Genetics Department has revealed a series of interactions between proteins that serves to maintain order in the early stages of embryonic development. The “cop” is a fruit fly protein named HOW, and it works by “arresting” strands of RNA on their way to manufacture a second protein. Levels of the second protein, known as Cdc25, regulate the timing of cell division, and its production is ultimately controlled by yet another protein, Twist, which sets the process in motion. In this intricately choreographed scenario, cells invaginate from the outer layer of the nascent embryo into its interior, changing shape as they go. These cells form the mesoderm or “in-between layer,” which eventually gives rise to muscle and other internal tissues. At the same time, Twist prompts the Cdc25 gene to step up activity, as well as activating the production of HOW.  HOW then takes direct action against Cdc25 RNA by breaking it apart, leading to the arrest of cell division during mesoderm invagination.
 
When Volk and her team studied the newly-formed embryos of mutant fruit flies that lacked the gene for HOW, they found the timing for this early developmental stage was skewed. Cells divided to excess while the inward migration of the mesoderm-bound cells was delayed.
 
Once mesoderm formation is complete, its cells undergo a new wave of division. The scientists suggest this happens because HOW’s arrest-and-destroy tactics delay Cdc25 activity, rather than stop it, altogether. Some of the RNA escapes detection by HOW, causing Cdc25 levels to rise very slowly. With carefully timed coordination, Cdc25 reaches critical levels for instigating cell division just when cells have finished changing shaped and are settled into place.
 
Volk and her team believe HOW may have several important functions in regulating further development in the fruit fly mesoderm. Other, similar proteins are active in various developing embryos, including one in mammals known to regulate nerve insulation and myelin formation in the central and peripheral nervous system. All commonly target RNA, shooting the messenger rather silencing the message at its source (the DNA), as many other regulatory proteins do. This may give them a relatively quick response time, helping the cell to efficiently fine-tune the complex ordering of development. 
 
Prof. Talila Volk’s research is supported by the Leo and Julia Forchheimer Center for Molecular Genetics. Prof. Volk is the incumbent of the Professor Sir Ernst B. Chain Professorial Chair of Neuro-Immunology.
Life Sciences
English

Scientists Identify A Gene Causing A Fatal Heart Condition, Common In An Israeli Bedouin Tribe

English
The mutation, which was found in a Bedouin tribe in Northern Israel, had previously caused the death of nine children in this tribe, in some cases from the same family. 'The new finding is expected to improve the screening for and treatment of this fatal disease, as well as opening a window to a better understanding of other heart conditions,' says Dr. Nili Avidan of the Weizmann Institute's Department of Molecular Genetics. 'We believe that mutations in this and other biochemically related genes may lie behind a number of as yet largely unsolved heart disorders.'

 

The team found that the disease is caused by a mutation in the gene known as Calsequestrin 2 (CASQ2), which plays a vital role in the contraction and relaxation of the heart. The mutation impairs the ability of the CASQ2 protein to attract and release calcium ions upon demand.

 

Published in the American Journal of Human Genetics, the study was performed by doctoral student Hadas Lahat, her advisors, Prof. Michael Eldar, Chief of the Heart Institute at the Sheba Medical Center and Dr. Elon Pras of the Danek Gartner Institute of Human Genetics, Sheba Medical Center, and Dr. Avidan, Dr. Tsviya Olender, Dr. Edna Ben-Asher, and Prof. Doron Lancet of the Weizmann Institute's Department of Molecular Genetics.

 

The study began when an eight-year-old girl in the tribe fainted following physical exertion, and was admitted to the Rambam Medical Center. Her two younger brothers suffered from the same symptoms, and two other siblings had previously died of the disease. While the hospital physicians believed that the children's symptoms were due to tachycardia, they were unable to identify the precise cause. The family then turned to Prof. Michael Eldar, Chief of the Heart Institute at the Sheba Medical Center, who diagnosed the children as suffering from PVT. During his meeting with them, Eldar learned that several other families in the village had a similar medical history.

 

The girl's family belongs to a Bedouin community in northern Israel, thought to be the descendants of three brothers who had settled there over 200 years ago. The nature of the disease and the common Bedouin custom of familial intermarriage alerted researchers to possible genetic involvement. Hypothesizing that one of these brothers had harbored a genetic mutation, Lahat, of the Danek Gartner Institute of Human Genetics, visited the community and tested the families. It appeared she was on the right track. In seven families alone, thirteen children were identified as having PVT and were given appropriate medication. Nine untreated children in these families had earlier died from this condition.

 

But the researchers had yet to identify the exact gene responsible for PVT from a possible 80 candidate genes. At the time the Human Genome Project was far from complete and information was available for only half of the 80 suspect genes. Lahat and her supervisor, Dr. Elon Pras, decided to approach Weizmann Institute scientists for help.

 

At the Institute Drs. Olender and Avidan initially had little success, yet as the Human Genome Project generated new information at an increasing speed, the researchers fortuitously came upon a newly mapped gene, Calsequestrin 2 (CASQ2), just as they were losing hope. The CASQ2 protein appeared as a good candidate because it serves as a calcium ion reservoir in heart muscle cells. By binding, holding, and releasing calcium ions, the CASQ2 protein could thus play a key role in the contraction and relaxation of heart muscles. A second clue came from an unexpected source. Only four months earlier a different research team had found that a mutation in another gene, known as RYR2, also causes a form of PVT. Furthermore, RYR2 was found to belong to the same cellular pathway as CASQ2.

 

The researchers soon found that the children suffering from PVT had a mutation in their CASQ2 gene, and were able to pinpoint how things had earlier gone wrong in those that had died. They discovered that the mutation was surprisingly small -- characterized by only a single base change, from G to C, in one of the DNA's nucleotides. Nevertheless this change causes the body to produce the amino acid histidine instead of aspartic acid, which impairs the CASQ2 protein's ability to attract and release calcium ions.

 

'The protein carries a very strong negative charge, thus binding a large number of positively charged calcium ions and releasing them when necessary,' says Avidan. 'Unfortunately, in the mutated CASQ2 protein, the overall negative charge is smaller, since the single base change replaces the aspartic acid which is negatively charged -- with the positively charged histidine. This most likely damages the protein's ability to attract calcium ions, leading to heart failure.'

 

Other scientists collaborating in this study are Etgar Levy-Nissenbaum and Dr. Boleslaw Goldman of the Danek Gartner Institute of Human Genetics and Dr. Asad Khoury and Dr. Avraham Lorber of the Rambam Medical Center.

 

Donor support: The Crown Human Genome Center and the Israel Science Foundation Grant

 

The Weizmann Institute of Science is a major center of scientific research Israel. Its 2,500 scientists, students and support staff are engaged in more than 1,000 research projects across the spectrum of contemporary science.

Life Sciences
English

Scientists At The Weizmann Institute Propose A New Theory To The Mystery Of The Origin Of Life

English

One of the greatest mysteries, which continuously fascinate many scientists worldwide, concerns the way by which life emerged on primeval Earth. The accepted notion is that prior to the appearance of living organisms, there was a stage of chemical evolution, which involved selection within inanimate chemical mixtures. This is thought to have eventually led to the crucial moment, when self-replicating molecules arose. As self-replication is a most fundamental characteristic of living entities, such an event is often defined as the birth of life.

 

Self-replication of molecular systems is often viewed in the context of information content. Many scientists believe that life began with the spontaneous emergence of biopolymers, such as proteins or RNA, where information is stored in the sequence of chemical units. Experiments mimicking the conditions on Earth billions of years ago have shown how such chemical units, e.g. some of the building blocks of proteins and RNA, could appear spontaneously. Yet, the emergence of proteins or self-replicating RNA molecules remained enigmatic.

 

This started Prof. Doron Lancet of the Molecular Genetics Department in the Weizmann Institute of Science, and his students, Daniel Segre and Dafna Ben-Eli, on a journey leading to alternatives to proteins and RNA. They have developed a model, suggesting a new route for the origin of life, based on lipid molecules. This model is described in an article published a recent issue of the Proceedings of the National Academy of Science, USA.

 

Lipids are oily substances, known as chief ingredients of the cell's membranes. Lipids have two different aspects -- one hydrophilic (water-attracting), and the other hydrophobic (water-repelling). They get readily synthesized under simulated prebiological conditions, and because of their bipartite nature, have the tendency to spontaneously form supramolecular structures made of thousands of molecular units. This is exemplified in lipid assemblies (micelles), which have even been shown to be capable of growing and splitting in a fashion reminiscent of cell replication. Yet a critical question was left unanswered: how could lipid assemblies carry and propagate information ?

 

The model proposed by Lancet and colleagues offers a solution. They surmise that early on, lipid-like compounds existed in a very large diversity of shapes and forms. They show mathematically that under such conditions, lipid assemblies could contain almost as much information as an RNA strand or a protein chain. Information would be stored in the assembly's composition, i.e. in the exact amount of each of its compounds, rather than in a sequence of molecular 'beads' on a string. A useful analogy would be that of perfume: the information -- the scent as discerned by receptors in the nose -- depends on each ingredient's proportion in the mixture, but the order in which aromas are added is unimportant.

 

Thus, the authors argue, heterogeneous lipid assemblies may be thought of as having a 'compositional genome'. They further demonstrate how a droplet-like lipid assembly, when growing and splitting, could manifest a form of inheritance. Their computer simulations show how a compositional genome would be handed down with some fidelity to the offspring assemblies. A crucial aspect of the model is how such molecular inheritance is made possible. In present-day cells, the replication of information-containing DNA is facilitated by protein enzyme catalysts. In the early prebiological era, catalysis could be performed by the same lipid-like substances that carry the information. Molecules already present inside a droplet would function as a molecular selection committee, enhancing the rate of entry for some, and rejecting others.

 

Lancet, Segre, and Ben-Eli designed a computerized simulation that shows how, based solely on physiochemical principles, lipid droplets with idiosyncratic compositions accrete, grow, split, self-replicate, accumulate compositional mutations, and get involved in a complex evolutionary game. Importantly, it is entire assemblies, with their complex mixtures of relatively small molecules that are replicated. This differs from the older models, in which a single, long RNA polymer is what gets copied. The scientists' model makes very few chemical assumptions and derives a rich molecular behavior reminiscent of life processes. It therefore has the potential of constituting the long-sought bridge leading from the inanimate world to that of living organisms.

 

This research has already attracted considerable interest, and was quoted in the recently published new edition of the classic book Origins of Life by Freeman Dyson from the Princeton Institute of Advanced Study. The next important question to be answered: how could lipid droplets undergo the numerous transitions needed to lead to living cells as we now know them? In this sense, the study marks the first footfall in a long journey to come.

 

Professor Lancet holds the Ralph and Lois Silver Professorial Chair in Neurogenomics.

 

The Weizmann Institute of Science is a major center of scientific research and graduate study located in Rehovot, Israel. Its 2,500 scientists, students and support staff are engaged in more than 1,000 research projects across the spectrum of contemporary science.

Life Sciences
English

Pages