Are you a journalist? Please sign up here for our press releases
Subscribe to our monthly newsletter:
The team included Dr. Tali Melkman Zehavi, students Roni Oren, Sharon Kredo, Amitai Mandelbaum and Tirosh Shapira, and lab technician Natali Rivkin. To begin, the researchers first checked to see whether microRNAs were involved in any way in pancreatic function. Using advanced genetic techniques to prevent microRNA from forming in the pancreases of mice, they came up with a clear answer: Without microRNA, the mice did not produce insulin, and they soon developed the symptoms of diabetes.
Next, as the team probed further, they identified the step in the gene-to-protein process that is dependent on microRNA control. That step is transcription – the stage in which the information encoded in the genes is copied out for use in protein production. But this finding left them with further questions. “It’s not obvious that microRNAs would be involved in the control of insulin transcription, as they are more often known to regulate post-transcriptional events in the cell,” says Hornstein. “We had to sit down and come up with a hypothesis that would include another intermediate – a so-called negative transcription factor.”
All cells carry the genetic information needed to produce insulin, but only beta cells actually do so. One of the reasons for this is that other cells actively repress insulin production; negative transcription factors keep the genetic information from ever getting transcribed. Beta cells, in contrast, normally maintain a profusion of the transcription factors that bind to genes and initiate insulin production, and very few of the negative factors that inhibit this process. Further testing showed that microRNA affects only the negative transcription factors in beta cells, squelching them so that insulin production can proceed.
Finally, Hornstein and his team identified four specific microRNA genes that appear to promote insulin synthesis.
This research recently appeared in the EMBO Journal. By showing how microRNA affects insulin production, Hornstein and his team have added a new layer to our understanding of the mechanisms involved in diabetes. Their findings may pave the way, in the future, to better tools for diagnosing the disease and eventually to better treatment.