A Short Day on Saturn

English
If you could jump a spaceship out past Mars and Jupiter to Saturn, pass by its rings and somehow park on the planet’s gaseous surface, how long would your day be there? This question, surprisingly, has not been precisely answered until now. The measurements – including those from the NASA Cassini spacecraft that is currently orbiting Saturn – have disagreed with one another, so they could be off by as much as a whopping 15 minutes. That range, says Dr. Yohai Kaspi of the Weizmann Institute’s Earth and Planetary Sciences Department, is a relatively large discrepancy for a giant planet with a day length – the planet’s rotation period – of just around ten and a half hours. Kaspi and his colleagues have now introduced a new method, which was published this week in Nature, that they used to accurately fix this fundamental value. Among other things, it can help scientists better understand the physical processes that shape Saturn and other planets like it. 

 

A day on Saturn
 
Determining the exact rotation period of Saturn has been problematic because two of the more common methods are useless there. The planet is mostly gas, so its surface features – windy streams that move at varying speeds – conceal the turning of the planet’s solid core. Another method, used for planets like Earth and Jupiter, is to measure how the magnetic pole rotates around the true pole; but on Saturn these two poles are aligned, so that rotation can’t be measured. Until now the measurements of Saturn’s rotation period have relied on radio emissions tracked by nearby spacecraft.

Kaspi and research scientist Dr. Eli Galanti, working together with Dr. Ravit Helled of Tel Aviv University, devised a way to calculate the planet’s rotation period based on measurements of its gravitational fields. “This method,” says Kaspi, “basically works backwards from the gravitational field and shape of the planet.”  As a large body, eg., a planet, spins, its shape flattens out a bit, gaining a sort of “belly” at its middle, he explains. The faster it spins, the more pronounced this belly will be. The resulting redistribution of the planet’s mass, in turn, creates fluctuations in the gravitational field of the planet. The gravitational field has been well measured and calculated, both by planetary missions and by telescope data; thus the gravitational field measurements could be used to uncover the missing figures for the rotation that produced them.  
 
 
The difficulty, says Galanti, was in the math. The equations originally contained too many variables to yield useful answers. So the team worked out a statistical method that reduced the uncertainties in the numbers. They then tested their method using figures for the gravitational field of Jupiter – a planet for which the rotational period has already been precisely calculated by the magnetic pole rotation method. When the gravitational field method yielded a number that precisely matched the known length of a day on Jupiter, the team applied it to Saturn’s rotation.
Dr. Yohai Kaspi
 
The figure they came up with matched the faster measurement, fixing the length of a day on Saturn at ten hours, 32 minutes. The uncertainty is now around 45 seconds – compared to the previous 15 minutes. Having a precise figure for Saturn, says Kaspi, will help researchers create models of how the planet formed and what goes on deep beneath its cloudy outer surface; but it will also provide another tool to help fix the rotation periods of other, farther out planets in the solar system and even beyond.
 
Dr. Yohai Kaspi's research is supported by the the Helen Kimmel Center for Planetary Science.
 
 
Illustration of Saturn
Space & Physics
English

Blowing in the (Stellar) Wind

English

When a supernova – the explosion of a distant star – was discovered last year, astrophysicists, with the help of telescopes around the globe, rushed to observe the fireworks. In its dramatic dying flares, this star – a rare type over 10 times the mass of our sun – can tell us something about the life of these fascinating cosmic bodies, as well as helping paint the picture of how all the heavier elements in the universe are formed.


To understand the star that produced the supernova, the researchers identified the mix of elements that was thrown off right before the explosion began. Prof. Avishay Gal-Yam of the Weizmann Institute’s Particle Physics and Astrophysics Department explains that the star can be identified by the proportion of such elements as carbon, oxygen and nitrogen detected in the material ejected into space. These elements are created in the nuclear fusion that powers the stars. In our own sun, hydrogen, the lightest atom, fuses to make helium and stops there; but in the massive, hot stars, fusion continues as helium atoms unite to form heavier elements – up to iron.

Scientists believe that such stars are layered like onions: The heaviest elements, for example iron, are located in the core while the lighter ones make up the outermost layers. At the stars’ outermost edges are stellar winds that blow the material found there out to space. In stars like the one that exploded the wind is so forceful, it can throw off a mass equal to that of our sun every 10,000 years. At some point in the star’s life, the lightweight hydrogen making up its outer layer runs out, and it begins tossing out its helium, oxygen, carbon and nitrogen.
 
UGC 9379 galaxy imaged in the Sloan digital sky survey before the supernova explosion (left) and by the Palomar Observatory robotic telescope and by the Palomar Observatory robotic telescope afterward (right)

 
 
Somewhere under the surface is a layer where hydrogen, helium and the heavier elements all meet. This layer must be high enough to hold hydrogen but still hot enough to produce the extreme temperatures needed for nuclear fusion. Scientists are interested in this layer, as it is the place in which nitrogen is formed. As opposed to carbon, with six protons (three fused helium atoms), or oxygen, with eight (four heliums), nitrogen has an odd number of protons – seven. That means it must be the result of fusion between even and odd atoms, for example, three heliums and a hydrogen. So measuring the quantities of nitrogen could reveal what lies underneath the skin of such stars.

While the wind sweeps away the star’s outer layers, its core continues to amass iron until it becomes so heavy it is no longer stable. At that point, the core collapses in a sudden, violent motion, hurling the outer layers off to produce the bright supernova we observe.

Detecting the elements ejected in the stellar wind just before the explosion could only be accomplished within a small window of time – up to a day or so after the terminal blast. This is because intense radiation produced by the explosion shock strips electrons from their atoms. Telescopes equipped with spectrographs aimed at the supernova can pick up the elements’ spectra – light that is emitted when the electrons are reunited with the atoms. But they must make their observations quickly before the rapidly-expanding debris from the explosion sweep up the more tenuous remnants of the wind and erase this last trace of the dying star.

The race to observe the spectra of the supernova’s wind began with the robotic telescopes at the Palomar observatory in California, a part of the iPTF project led by Prof. Shri Kulkarni of the California Institute of Technology (Caltech). These are programmed to find transient events – sudden changes in the night sky that could be new supernovae – and alert team members about the sightings. Halfway around the world, Dr. Iair Arcavi, then a doctoral student in Gal-Yam’s group, received the notification. While researchers in the US slept, he assessed the finding, realized its significance, and contacted Dr. Assaf Horesh, then a postdoctoral fellow at Caltech (who has since joined the Weizmann team). Horesh  then conducted spectroscopic observations at the Keck observatory in Hawaii, which is farther west than Palomar and could thus extend the nighttime viewing of the supernova. Acting quickly, he managed to record the emission spectra of the material thrown to the wind a mere 15 hours after the star exploded.

Working backward from the post-blast observations, Gal-Yam, Arcavi, Horesh and their colleagues assessed the recorded spectra and showed that the star that had exploded indeed had a nitrogen-rich wind, similar to those of  the so-called Wolf-Rayet stars we know in our galaxy. The results of their study were published this week in Nature.This is the first time, says Gal-Yam, that this has been done. Now that the team has shown that the combination of efficient global organization and the mobilization of telescopes around the world can work to capture such fleeting events, they hope that further sightings of infant supernova explosions will be possible. Understanding how these stars live and die is important, he says, not just because it gives us a window on the workings of the universe. “All the heavier elements in the universe – those with a mass larger than that of helium – are created in the fusion furnaces of large stars and dispersed through supernova explosions. So many questions – about the origins and the relative abundance of different elements – go back to these processes taking place throughout the cosmos.”

The intermediate Palomar Transient Factory (iPTF) — led by the California Institute of Technology (Caltech)  — started searching the skies for certain types of stars and related phenomena this past February. The iPTF was built on the legacy of the Palomar Transient Factory (PTF), designed in 2008 to systematically chart the transient sky by using a robotic observing system mounted on the 48-inch Samuel Oschin Telescope on Palomar Mountain near San Diego, California. iPTF is a scientific collaboration of the California Institute of Technology, Los Alamos National Laboratory, the University of Wisconsin, Milwaukee, the Oskar Klein Center, the Weizmann Institute of Science, the TANGO Program of the University System of Taiwan, and the Kavli Institute for the Physics and Mathematics of the Universe.

Dr. Avishay Gal Yam’s research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Nella and Leon Benoziyo Center for Astrophysics; and the Peter and Patricia Gruber Awards.
 
 
UGC 9379 galaxy imaged in the Sloan digital sky survey before the supernova explosion (left) and by the Palomar Observatory robotic telescope and by the Palomar Observatory robotic telescope afterward (right)
Space & Physics
English

Think Positive

English
Prof. Eli Waxman
 
Over the past few years, the astronomers monitoring the data from the PAMELA satellite mission have reported a surprising phenomenon: They identified a strong stream of positrons not far from Earth. Positrons are “anti-electrons” – particles that are identical to electrons in all ways save their charge, which is positive as compared to the electrons’ negative one. Where do these positrons come from? How are they created?
 
The existence of the positrons was not a surprise: The mission, which explores cosmic rays, was looking for positrons. Astrophysicists believe that the source of these positrons is cosmic ray collisions that occur in the interstellar gas. Such collisions create short-lived particles that, as they perish, produce various other particles, including positrons. The surprise was in their number, which was much higher than models had predicted. So the question was: Where do the excess positrons come from?

A number of theories have arisen; many of them are based on “dark matter” – the invisible stuff that, if it exists, would explain several anomalies in the astronomical observations of gravity.

Prof. Eli Waxman, and former research students Kfir Blum and Boaz Katz, wondered if dark matter – which has not been proven to exist – is needed to explain the extra positrons; and they wanted to understand how these positrons advance through the galaxy, which could yield clues as to their source. Though no existing model can explain how the positrons move through galactic space, Waxman and his group found a way to calculate the upper limit on the number of positrons that can be created and dispersed in the galaxy. Their model did not rely on the existence of any type of dark matter.

Recent data from another satellite mission – AMS – showed that the number of positrons at high energies comes close to the limit proposed by the Weizmann team, but does not exceed it. Analysis suggests that cosmic ray collisions in the interstellar gas can explain the existence of the positron stream, without involving dark matter. Armed with this knowledge, AMS is now gathering information on the emission of cosmic radiation out of the galaxy into intergalactic space.

 
Prof. Eli Waxman's research is supported by the Nella and Leon Benoziyo Center for Astrophysics, which he heads; and the Friends of the Weizmann Institute in memory of Richard Kronstein. Prof. Waxman is the incumbent of the Max Planck Professorial Chair of Quantum Physics.

 
 
 
Prof. Eli Waxman
Space & Physics
English

Weather on the Outer Planets Only Goes So Deep

English

What is the long-range weather forecast for the giant planets Uranus and Neptune? These planets are home to extreme winds blowing at speeds of over 1000 km/hour, hurricane-like storms as large around as Earth, immense weather systems that last for years and fast-flowing jet streams. Both planets feature similar climates, despite the fact that Uranus is tipped on its side with the pole facing the sun during winter. The winds on these planets have been observed on their outer surfaces; but to get a grasp of their weather systems, we need to have an idea of what is going on underneath. For instance, do the atmospheric patterns arise from deep down in the planet, or are they confined to shallower processes nearer the surface? New research at the Weizmann Institute of Science, the University of Arizona and Tel Aviv University, which was published online today in Nature, shows that the wind patterns seen on the surface can extend only so far down on these two worlds.


Understanding the atmospheric circulation is not simple for a planet without a solid surface, where Earth-style boundaries between solid, liquid and gas layers do not exist. Since the discovery of these strong atmospheric winds in the 1980s by the Voyager II spacecraft, the vertical extent of these winds has been a major puzzle – one that influences our understanding of the physics governing the atmospheric dynamics and internal structure of these planets. But a team led by Dr. Yohai Kaspi of the Weizmann Institute’s Environmental Sciences and Energy Research Department realized they had a way, based on a novel method for analyzing the gravitational field of the planets, to determine an upper limit for the thickness of the atmospheric layer.

Deviations in the distribution of mass in planets cause measurable fluctuations in the gravitational field. On Earth, for example, an airplane flying near a large mountain feels the slight extra gravitational pull of that mountain. Like Earth, the giant planets of the solar system are rapidly rotating bodies. In fact all of them rotate faster than Earth; the rotation periods of Uranus and Neptune are about 17 and 16 hours, respectively. Because of this rapid rotation, the winds swirl around regions of high and low pressure. (In a non-rotating body, flow would be from high to low pressure.) This enables researchers to deduce the relations between the distribution of pressure and density, and the planets’ wind field. These physical principles enabled Kaspi and his co-authors to calculate, for the first time, the gravity signature of the wind patterns and thus create a wind-induced gravity map of these planets.

By computing the gravitational fields of a large range of ideal planet models – ones with no wind, a task conducted by team member Dr. Ravit Helled of Tel Aviv University – and comparing them with the observed gravitational fields, upper limits to the meteorological contribution to the gravitational fields were obtained. This enabled Kaspi’s team, which included Profs. Adam Showman and Bill Hubbard of the University of Arizona, and Prof. Oded Aharonson of the Weizmann Institute, to show that the streams of gas observed in the atmosphere are limited to a “weather-layer” of no more than about 1000 km in depth, which makes up only a fraction of a percent of the mass of these planets.

Although no spacecraft missions to Uranus and Neptune are planned for the near future, Kaspi anticipates that the team’s findings will be useful in the analysis of another set of atmospheric circulation patterns that will be closely observed soon: those of Jupiter. Kaspi, Helled and Hubbard are part of the science team of NASA’s Juno spacecraft to Jupiter. Juno was launched in 2011; upon reaching Jupiter in 2016 it will provide very accurate measurements of the gravity field of this giant gaseous planet. Using the same methods as the present study, Kaspi anticipates that they will be able to obtain the same type of information they acquired for Uranus and Neptune: namely, placing constraints on the depth of the atmospheric dynamics of this planet.

Uranus and Neptune are the farthest planets in the solar system, and there are still many open questions regarding their formation and composition. This study has implications for revealing the mysteries of their deep, dark interiors, and may even provide information about how these planets were formed. Moreover, many of the extrasolar planets detected around other stars have been found to have similar masses to those of Uranus and Neptune, so this research will be important for understanding like-sized extrasolar planets, as well.
 
Image from the Voyager II flyby of Neptune in August 1989 (NASA). In the middle is the Great Dark Spot, accompanied by bright, white clouds that undergo rapid changes in appearance. To the south of the Great Dark Spot is the bright feature that Voyager scientists nicknamed "Scooter." Still farther south is the feature called "Dark Spot 2," which has a bright core. As each feature moves eastward at a different velocity, they are rarely aligned this way. Wind velocities near the equator are westward, reaching 1300 km/h, while those at higher latitudes are eastward, peaking at 900 km/h
 

 

 
Prof. Oded Aharonson’s research is supported by the Helen Kimmel Center for Planetary Science, which he heads; the J&R Center for Scientific Research; and the estate of Joseph and Erna Lazard.
Image from the Voyager II flyby of Neptune in August 1989 (NASA). In the middle is the Great Dark Spot, accompanied by bright, white clouds that undergo rapid changes in appearance. To the south of the Great Dark Spot is the bright feature that Voyager scientists nicknamed "Scooter." Still farther south is the feature called "Dark Spot 2," which has a bright core. As each feature moves eastward at a different velocity, they are rarely aligned this way. Wind velocities near the equator are westward, reaching
Space & Physics
English

Observed: The Outburst before the Blast

English

 

Before they go all-out supernova, certain large stars undergo a sort of “mini-explosion,” throwing a good-sized chunk of their material off into space. Though several models predict this behavior and evidence from supernovae points in this direction, actually observations of such pre-explosion outbursts have been rare. In new research led by Dr. Eran Ofek of the Weizmann Institute, scientists found such an outburst taking place a short time – just one month – before a massive star underwent a supernova explosion.
 
The findings, which appeared today in Nature, help to clarify the series of events leading up to the supernova, as well as providing insight into the processes taking place in the cores of such massive stars as they progress toward the final stage of their lives.
 
Ofek, a member of the Institute’s Particle Physics and Astrophysics Department, is a participant in the Palomar Transient Factory (PTF) project (led by Prof. Shri Kulkarni of the California Institute of Technology), which searches the skies for supernova events using telescopes at the Palomar Observatory in California. He and a research team from Israel, the UK and the US decided to investigate whether outbursts could be connected to later supernovae by combing for evidence of them in observations that predated PTF supernova sightings, using tools developed by Dr. Mark Sullivan of the University of Southampton.
 
The fact that they found such an outburst occurring just a little over a month before the onset of the supernova explosion was something of a surprise, but the timing and mass of the ejected material helped them to validate a particular model that predicts this type of pre-explosion event. A statistical analysis showed that there was only a 0.1% chance that the outburst and supernova were unrelated occurrences.
 
The exploding star, known as a type IIn supernova, began as a massive star, at least 8 times the mass of our sun. As such a star ages, the internal nuclear fusion that keeps it going produces heavier and heavier elements – until its core is mostly iron. At that point, the weighty core quickly collapses inward and the star explodes.
 
The violence and mass of the pre-explosion outburst they found, says Ofek, point to its source in the star’s core. The material is speedily ejected from the core straight through the star’s surface by the excitation of gravity waves. The researchers believe that continued research in this direction will show such mini-explosions to be the rule for this type of supernova.  
 
Also participating in this research were Prof. Avishay Gal-Yam, Dr. Ofer Yaron and Iair Arcavi of the Institute’s Particle Physics and Astrophysics Department, and Prof. Nir Shaviv of the Hebrew University of Jerusalem.    
 
Chandra Crab Nebula. Image: NASA
                                    
 

Prof. Avishay Gal-Yam’s research is supported by the Helen and Martin Kimmel Award for Innovative Investigation; the Nella and Leon Benoziyo Center for Astrophysics; and the Lord Sieff of Brimpton Memorial Fund.

Dr. Eran Ofek’s research is supported by the Willner Family Leadership Institute. Dr. Ofek is the incumbent of the Arye and Ido Dissentshik Career Development Chair.  


 

 
Chandra Crab Nebula. Image: NASA
Space & Physics
English

Why do We See the Man in the Moon?

English
 
There’s something poetic about gazing up at the night sky, seeing the familiar face of the “Man in the Moon” who faithfully accompanies us through life. The synchronous rotation of the Moon - it  takes the same amount of time to spin around its own axis as it does to revolve around Earth - is what causes the Moon to "lock eyes" with Earth. This results in one of its hemispheres constantly facing us. But is there a reason why this particular half of the Moon locked with Earth, or was it pure coincidence that it didn’t “turn its back” on us?
 
Through careful analysis and computer-generated simulations, Prof. Oded Aharonson of the Weizmann Institute’s Center for Planetary Science (he began this research while still at the California Institute of Technology), together with Prof. Peter Goldreich of the California Institute of Technology and Prof. Re’em Sari of the Hebrew University of Jerusalem have shown that it is not coincidence but the Moon’s geophysical properties that determine its orientation. Their findings have recently been published in Icarus.
 
The near side of the Moon is low-lying and covered by craters filled with dense, dark volcanic material, giving us the Man in the Moon. In contrast, the far side is predominately made up of higher mountainous regions. “Intuitively, we might actually have expected the far side to be facing us as the high mountains would have brought the Moon closer to Earth, putting the system in a lower energy state,” says Aharonson. Nature usually prefers lower energy states, so why isn’t this the case?
 
The motion of the Moon is a bit like the motion of toy train circling around a track with two hills and two valleys. The hills and valleys represent the different energy levels of the orientation of the geophysically asymmetric Moon. Friction causes the train to slow down until it doesn’t have enough energy to climb over the hill, and settles into one of the valleys. The choice of valleys is governed not by the depth of valleys, but rather by the height of the hill it crossed for the last time. Similarly for the Moon, its maxima energy (the hills in our analogy) governs the ultimate state of the Moon, not its minima energy (the valleys).
 
According to the scientists’ simulations, the energy values calculated for the current geophysical characteristics of the Moon favor locking it in the current orientation. "In fact, by designing different models of the Moon – moving its mass around, and altering various other parameters that affect its gravitational properties – we are able to have complete control over which ‘valley’ the Moon settles into," says Aharonson.
 
Some might argue that the Moon would have locked with Earth very early in its existence, when its properties were much different to those of today's moon, and so these findings might not explain the actual events. The scientists, and indeed some evidence, suggest that the other side of the Moon could have been facing Earth at some point, but was hit out of sync and then later relocked into the current orientation in the way described by the new findings.
 
Aharonson: "For me, what is most interesting is not seeing the Man in the Moon, but the elegance of how the system works."
 
Prof. Oded Aharonson would like to acknowledge support from the Lunar Reconnaissance Project.
 

The lunar nearside (left) is a contrast between dark (craters) and light (mountains) surfaces that has been fancied as the Man in the Moon. Lunar terrain types are still designated by their 17th century name maria and terra (brighter features also known as uplands or highlands; right). Images by NASA.

Prof. Oded Aharonson’s research is supported by the estate of Joseph and Erna Lazard.
 
 
 
The lunar nearside (left) is a contrast between dark (craters) and light (mountains) surfaces that has been fancied as the Man in the Moon. Lunar terrain types are still designated by their 17th century name maria and terra (brighter features also known as uplands or highlands; right). Images by NASA.
Space & Physics
English

Scenes from a Supernova

English
 
 
(l-r) Drs. Avishay Gal-Yam and Eran Ofek in the Martin Kraar Observatory on the Weizmann campus
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In late August, automatic telescopes searching for signs of developing supernovae spotted one just a half a day into the explosion process. Not only was this a very early observation, the supernova was a mere 6.4 megaparsecs away – the closest one in the last 25 years. Weizmann Institute scientists were part of the discovery team, and they realized they had a unique opportunity: The technological advances of the past few decades would enable them to explore this supernova with methods never applied before. Soon, a number of other telescopes were pointed at the supernova’s home in the Pinwheel Galaxy.

The new sighting was a Type 1a supernova; these kinds of exploding stars are such a regular feature of the Universe that astrophysicists use them to measure cosmic distances. The theory of dark energy, for instance, for which the 2011 Nobel Prize in Physics was awarded, is based on supernova measurements which revealed that the expansion of the Universe is accelerating. Unfortunately, says team member Dr. Eran Ofek, “we know embarrassingly little about the physical processes underlying these supernovae.”

The Weizmann scientists, Ofek and Dr. Avishay Gal-Yam of the Particle Physics and Astrophysics Department, participate in the Palomar Transient Factory (PTF), a project for identifying new supernovae in the Universe. The PTF team recently published three new papers based on their initial observations and analysis of the nearby supernova, two of them in Nature and one in The Astrophysical Journal.

The new supernova was observed with X-ray and radio wave telescopes, both Earth- and satellite-based. In addition, a number of images of the Pinwheel Galaxy had been produced by the Hubble Space Telescope over the years, and the researchers went back to these to see if they could detect pre-explosion signs of the system that gave rise to the supernova.  
 
The site of SN 2011fe in galaxy M101 as imaged by the Hubble Space Telescope/ Advanced Camera for Surveys
 
To the scientists’ surprise, the X-ray and radio observations yielded no significant data; the archival study did not reveal what was there beforehand. But, like the dog in the Sherlock Holmes story that didn’t bark, this lack turned out to be a significant clue: It allowed them to eliminate several of the proposed scenarios for the setup that might have caused the explosion.

These scenarios fall into two broad categories, both of them involving ancient, dense stars called white dwarfs. In one of them, two white dwarfs merge, and their combined mass becomes unstable, ending in a thermonuclear blast. In the other, the heavy white dwarf siphons off material from a companion star until it exceeds its stable weight limit, again causing an explosion. Proposed companion stars run the gamut from huge, gaseous red giants to smaller, sun-like stars.

The PTF results, including an analysis of the material thrown off in the blast and of the “shock breakout” that takes place as the light released in the shockwave passes through the mass of erupting material, showed that the exploding star was, as predicted, a white dwarf. The picture that emerged was of an extremely compact star – its diameter much smaller than that of our sun. And while the team didn’t manage to discount either category, they set an upper limit on the size of a possible companion, showing it could not have been a particularly large star – excluding, for instance, a red giant scenario.

“Although we can’t rule out a white dwarf merger,” says Ofek, “our results point to another likely scenario, in which a medium-range star – close to our sun’s size – supplied the white dwarf with the extra material needed to turn it into a supernova.”


A Marriage Written in the Stars


Dr. Eran Ofek, who recently joined the Weizmann Institute’s Particle Physics and Astrophysics Department after six years in California, started working almost as soon as his plane landed in Israel: “We arrived on August 23rd, and on the 24th we got notification of the new supernova. Instead of setting up house or shopping for a car, I was on line with other astrophysicists arranging observation time and collecting data.”

Fortunately for Ofek, who is married and the father of two small daughters, his wife, Dr. Orly Gnat, was forgiving. She is also an astrophysicist, who is currently undertaking postdoctoral research at the Hebrew University of Jerusalem. Ofek and Gnat met when they were undergraduates at Tel Aviv University. After receiving their doctorates from Tel Aviv University, they went on to postdoctoral positions at the California Institute of Technology (Caltech) and have now returned to Israel.

At Caltech, Ofek was involved in setting up the Palomar Transient Factory – a project based at the Palomar Observatory in California that searches for transient bursts of light indicating stellar explosions. The Weizmann Institute is a partner in PTF, along with scientists from all over the US and Europe. Ofek was responsible for the telescopes’ robotic capabilities: These autonomous seekers “decide” for themselves which parts of the sky to search and analyze their observations independently before notifying team members of possible supernova sightings. Ofek: “The PTF has identified more supernovae than any other survey, and we have expanded the number of known types of supernovae, as well.”
 
Dr. Avishay Gal Yam's research is supported by the Nella and Leon Benoziyo Center for Astrophysics; the Yeda-Sela Center for Basic Research; the Legacy Heritage Fund Program of the Israel Science Foundation; the Peter and Patricia Gruber Awards; and the Lord Sieff of Brimpton Memorial Fund. 
 
Dr. Eran Ofek's research is supported by the Willner Family Leadership Institute.

 

      


 
 
(l-r) Drs. Avishay Gal-Yam and Eran Ofek in the Martin Kraar Observatory on the Weizmann campus
Space & Physics
English

A Supernova with a View

English
Type 1a supernovae are such regular features of the Universe that astrophysicists use them to measure cosmic distances. But we still don’t know exactly what makes these giant explosions occur. Now, scientists at the Weizmann Institute of Science, as part of an international effort to study supernovae, are beginning to clear up the mystery of why certain stars explode in a brilliant display at the ends of their lives.

New research began last August, when the automatic telescopes at the Palomar Transient Factory (PTF) in California that search for signs of developing supernova spotted one just a half a day into the explosion process. Not only was this a very early observation, but the supernova was in the Pinwheel Galaxy a mere 6.4 Megaparsecs away – the closest one in the last 25 years.

The scientists participating in PTF, including Drs. Eran Ofek and Avishay Gal-Yam of the Particle Physics and Astrophysics Department, have recently published three new papers based on their initial observations and analysis, two of them appearing in Nature and one in The Astrophysical Journal.

Data on the new supernova came from X-ray and radio wave telescopes, both Earth- and satellite-based. In addition, the researchers went over images of the Pinwheel Galaxy taken by the Hubble Space Telescope over the years to see if they could detect pre-explosion signs of the system that gave rise to the supernova.  

To the scientist’s surprise, the X-ray and radio observations yielded no significant data, and the archival study did not reveal what was there beforehand. But, like the dog in the Sherlock Holmes story that didn’t bark, this lack turned out to be a significant clue: It allowed them to eliminate some of the various scenarios proposed for the type of setup causing the explosion.

These scenarios fall into two broad categories, both of them involving ancient, dense stars called white dwarfs. In one, two white dwarfs merge, and their combined mass becomes unstable, ending in a thermonuclear blast. In the other, the heavy white dwarf siphons off material from a companion star until it exceeds its stable weight limit, again causing an explosion. Proposed companion stars run the gamut from huge, gaseous red giants to smaller, sun-like stars.

The team’s results, including an analysis of the material thrown off in the blast and of the “shock breakout” that takes place as the light released in the shockwave passes through the mass of erupting material (conducted by Itay Rabinak, a student of Prof. Eli Waxman of the same department), showed that the exploding star was, as predicted, a white dwarf: an extremely compact star with a diameter much smaller than that of our sun. And while the team didn’t manage to discount either category, they set an upper limit on the size of a possible companion, showing it could not have been a particularly large star, such as a red giant.

“Although we can’t rule out a white dwarf merger,” says Ofek, “our results point to another likely scenario in which a medium range star – close to our sun’s size – supplied the white dwarf with the extra material needed to turn it into a supernova.”
 
Dr. Avishay Gal-Yam’s research is supported by the Peter and Patricia Gruber Award; the Nella and Leon Benoziyo Center for Astrophysics; the Yeda-Sela Center for Basic Research; and the Lord Sieff of Brimpton Memorial Fund.

Dr. Eran Ofek’s research is supported by the Willner Family Leadership Institute.


 
Space & Physics
English

Supernova News

English

 

Before and after images of the Messier 100 Galaxy reveal the appearance of SN 2006X, one of the supernovae used in the study. Photos: European Southern Observatory (ESO)
 
 

Cosmic distances are difficult to grasp and no less difficult to measure. When it comes to other galaxies or even remote parts of our own Milky Way, distance measurements are nothing but assessments, derived from indirect clues.
 
Highly important among such clues are supernovae, extremely luminous stellar explosions. The distance to a supernova of a particular type, called Type Ia, can be calculated from its brightness: the brighter it appears, the closer it is to the viewer. Thanks to such supernovae, for example, astronomers have famously revealed that our universe is expanding at an accelerated pace, which suggests that it’s permeated with mysterious dark energy. These calculations, however, are based on the assumption that all Type Ia supernovae have the same luminosity. Are all these explosions indeed created equal?
 
Type Ia supernovae are thought to be born when an exceedingly dense star called a white dwarf receives more mass from a nearby star, until it’s so “overwhelmed” that it explodes. A new study reported in Science and led by Weizmann Institute researchers, has gained major insight into the nature of these mass “donors.” The study was performed by Dr. Avishay Gal-Yam and postdoctoral fellow Dr. Assaf Sternberg of Weizmann’s Particle Physics and Astrophysics Department, in collaboration with scientists from more than a dozen research centers in the United States, Europe and Australia.
 
The researchers have revealed that in about a quarter of the cases in spiral galaxies (like the one pictured above), and possibly more, the companion star that “donates” its mass to the white dwarf is probably a regular, medium-sized star, largely similar to our own Sun. They reached this conclusion by analyzing the outflow of gas, typical of sun-like stars, observed during the “donation” of the mass. These findings constitute a major step toward determining the nature of all stellar “donors,” with the ultimate goal of establishing whether supernovae everywhere evolve in the same manner, having the same luminosity at various stages. Understanding their evolution, in turn, can greatly enhance our ability to measure distances throughout the cosmos and map its evolution and geometry.
 
Institute observatory captures images of a new supernova
 
Photo: Ilan Manulis, Martin Kraar Observatory
 

Exploding stars are the "factories" that produce all the heavy elements found, among other places, in our bodies. In this sense, we are all stardust. These exploding stars – supernovae – are highly energetic events that can occasionally light up the night sky. Such an explosion generally disrupts the balance between gravity – which pulls the star's material inward – and the thermonuclear reaction at the star's core – which heats it and pushes it outward.

Certain types of stars to which this happens have 10-100 time the mass and are much younger than our sun. In them, the nuclear reaction begins like that of our sun – fusing hydrogen into helium – but the fusion then continues, producing heavier and heavier elements. The nuclear reaction eventually stops with iron, as there is no energy benefit to the star to fuse the heavier atoms, and the balance between gravity and thermonuclear activity comes to a halt. Gravity then takes over, and the mass of the star collapses quickly, releasing so much energy in the process that the explosion ensues. The star hurls its outer layers into space, and a new "bright star" appears in the night sky where none was seen before. Just such a new star was observed in the night sky between May 31 and June 1 in a spiral arm of our galaxy's close neighbor, the M51 galaxy.

The first to identify the supernova were amateur astronomers in France, and soon after it was detected by the Palomar Transient Factory (PTF) Sky Survey, in which Weizmann Institute scientists participate (see below). The phenomenon was also photographed in the new Martin Kraar Observatory at the Weizmann Institute, as well as in Tel Aviv University's Wise Observatory in Mitzpe Ramon. Israel's place on the globe enables its scientists to follow supernova events when it is daytime for many other observers, and thus to add significantly to the data collection.

The new supernova is being studied by an international team of researchers, including Dr. Avishay Gal-Yam and his research team, Drs. Ofer Yaron, David Polishook and Dong Xu, research students Iair Arcavi and Sagi Ben Ami, and Director of the Kraar Observatory, Ilan Manulis, all of the Weizmann Institute's Particle Physics and Astrophysics Department, as well as scientists from the US, England, Canada and other countries. They have already noted that the material thrown into space in the explosion contains a wide variety of elements. The mix they observed is atypical of supernova events at such an early stage of the explosion, and they plan to investigate this phenomenon.   


The last supernova observed in M51 (which is a mere 26 million light years away) occurred in 2005. Supernovae are thought to appear about once in 100 years in any given galaxy. The high occurrence in M51 can be explained by its interaction with a nearby galaxy, which causes the process of massive star formation to accelerate, thus increasing the rate of collapse and explosion as well.
 



Brighter, hotter, faster


A new class of supernova has scientists baffled. Recently, astrophysicists participating in the Palomar Transient Factory (PTF) – a project based at the Palomar Observatory in California that searches for transient flashes of light indicating stellar explosions – identified four new supernovae that did not conform to any known patterns. The PTF is an international collaboration in which the Weizmann Institute is a founding partner. The Institute’s Dr. Avishay Gal-Yam and research student Iair Arcavi, and Dr. Eran Ofek of the California Institute of Technology, who will soon be joining the Weizmann Institute, were part of the team that identified what makes these exploding stars so unique. In the process, they realized that another two, discovered earlier, also fit the pattern, bringing the number of supernovae in the new class to six.

So far, they have found that these supernovae have very little hydrogen – a puzzle, since most stars throw out large amounts of hydrogen when they explode. In addition, they are about ten times brighter than the most common type of supernova, and hotter as well; they expand at a rate of about 10,000 kilometers a second; and they take much longer to fade away than the others.

The processes that shape these new supernovae can’t be explained by the existing models, though several explanations have been proposed. Strangely, all were found in dwarf galaxies, and the explosions lit up these dim galaxies, illuminating the hard-to-see star groups and possibly shedding light on the fate of ancient, massive stars in the early Universe.
 

(l-r) Ilan Manulis, Dr. Avishay Gal-Yam, Dr. Ofer Yaron and Iair Arcavi. Explosive new images

Dr. Avishai Gal-Yam’s research is supported by the Nella and Leon Benoziyo Center for Astrophysics; the Yeda-Sela Center for Basic Research; the Peter and Patricia Gruber Award; the Legacy Heritage Fund Program of the Israel Science Foundation; Miel de Botton Aynsley, UK; and the Lord Sieff of Brimpton Memorial Fund.

Before and after images of the Messier 100 Galaxy reveal the appearance of SN 2006X, one of the supernovae used in the study. Photos: European Southern Observatory (ESO)
Space & Physics
English

Are Stellar Explosions Created Equal?

English

 

 

Before and after images of the Messier 100 Galaxy reveal the appearance of SN 2006X, one of the supernovae used in the study. Photos: European Southern Observatory (ESO)
 

 

 
Cosmic distances are difficult to grasp and no less difficult to measure. When it comes to other galaxies or even remote parts of our own Milky Way, distance measurements are nothing but assessments, derived from indirect clues.

Highly important among such clues are supernovae, extremely luminous stellar explosions. The distance to a supernova of a particular type, called Type Ia, can be calculated from its brightness: the brighter it appears, the closer it is to the viewer. Thanks to such supernovae, for example, astronomers have famously revealed that our universe is expanding at an accelerated pace, which suggests that it’s permeated with mysterious dark energy. These calculations, however, are based on the assumption that all Type Ia supernovae have the same luminosity. Are all these explosions indeed created equal?

Type Ia supernovae are thought to be born when an exceedingly dense star called a white dwarf receives more mass from a nearby star, until it’s so “overwhelmed” that it explodes. A new study reported in Science and led by Weizmann Institute researchers, has gained major insight into the nature of these mass “donors.” The study was performed by Dr. Avishay Gal-Yam and postdoctoral fellow Dr. Assaf Sternberg of Weizmann’s Particle Physics and Astrophysics Department, in collaboration with scientists from more than a dozen research centers in the United States, Europe and Australia.

The researchers have revealed that in about a quarter of the cases in spiral galaxies, and possibly more, the companion star that “donates” its mass to the white dwarf is probably a regular, medium-sized star, largely similar to our own Sun. They reached this conclusion by analyzing the outflow of gas, typical of sun-like stars, observed during the “donation” of the mass. These findings constitute a major step toward determining the nature of all stellar “donors,” with the ultimate goal of establishing whether supernovae everywhere evolve in the same manner, having the same luminosity at various stages. Understanding their evolution, in turn, can greatly enhance our ability to measure distances throughout the cosmos and map its evolution and geometry.  
 
Dr. Avishay Gal-Yam’s research is supported by the Nella and Leon Benoziyo Center for Astrophysics; the Yeda-Sela Center for Basic Research; the Peter and Patricia Gruber Award; the Legacy Heritage Fund Program of the Israel Science Foundation; Miel de Botton Aynsley, UK; and the Lord Sieff of Brimpton Memorial Fund.

 
Before and after images of the Messier 100 Galaxy reveal the appearance of SN 2006X, one of the supernovae used in the study. Photos: European Southern Observatory (ESO)Before and after images of the Messier 100 Galaxy reveal the appearance of SN 2006X, one of the supernovae used in the study. Photos: European Southern Observatory (ESO)
Space & Physics
English

Pages