Brain researchers throughout the world aspire to accurately map nerve cell clusters in action --'conversing' with their peers in the form of electrical impulses, while processing sensory information or performing cognitive functions.
Each cluster, containing thousands of nerve cells performing a given processing task, is called a 'cortical column.' Cortical columns are the 'microprocessors' of the brain. Brain researchers maintain that the ability to obtain an exact mapping of the cortical column is critical to understanding how the human brain can perform its remarkable functions. Yet, until now they have been unable to do so directly, and have had to rely on several indirect methods such as Positron-Emission-Tomography (PET), optical imaging and fMRI.
Brain-Vein Mapping
These methods are based on the more than 100 years old discovery made by Lord Sherrington of a connection between the brain's electrical activity and changes in blood circulation. For example, PET is based on injecting a radioactive substance into the blood stream and mapping the locational alterations in blood flow in response to electrical activity in the brain. Using fMRI, scientists track changes in the levels of oxygen bound to hemoglobin in the blood stream, resulting from hemoglobin supplying oxygen to active nerve cells. fMRI is entirely non-invasive, hence its advantage over PET, which relies on the injection of radioactive tracers. Therefore, fMRI may be used to explore the same brain for many years, thereby potentially enabling researchers to track and map memory traces, aging processes, or functional recovery from trauma or stroke.
Until recently, the level of mapping accuracy rendered by these techniques was fairly limited: they could map an active area in the human brain at an accuracy level of 1-3mm (fMRI) or 3-7mm (PET), and thus were unable to map the brain's basic processing units - the 0.5mm wide 'microprocessors.'
Mapping Brain microprocessors
In the last 15 years, Prof. Amiram Grinvald of the Weizmann Institute's Neurobiology Department has developed a novel optical imaging brain-mapping approach based on tracking color changes in the blood supplying oxygen to the active microprocessors. Using this technology, Grinvald was able to identify the exact time and place in which nerve cells consume oxygen from the blood-dense microcirculation system. The high resolution achieved by optical imaging permitted him to fully map individual cortical columns - the brain's 'microprocessors.' These included visual system microprocessors related to shape, color, and motion perception. Optical imaging also laid the foundation for the development of functional MRI, which is more suitable for non-invasive human brain research and clinical applications. Initially, scientists hoped that using fMRI would enable brain mapping at the same level of accuracy achieved by the optical imaging technology. Indeed, both methods detect a considerable 'activity crest' that appears roughly 6 seconds after the onset of electrical activity. Unfortunately, the fMRI systems could not detect the 'initial dip,' a negative signal that appearsearlier, which is clearly visible by optical imaging systems.
'Initial Dips' and 'Activity Crests'
This is where things stood until recently. Two months ago, however, Ivo Vanzetta and Amiram Grinvald of the Weizmann Institute of Science, published a paper in Science in which they proposed how the fMRI system's resolution could be greatly enhanced. A team of scientists from Minnesota University, led by Prof. Kamil Ugurbil, has adopted this 'recipe.' First, they found the missing 'initial dip' with fMRI, thus showing that the two techniques can monitor the same vascular events provided the fMRI is done in a strong magnetic field. (Just like with optical imaging, the 'initial dip' provides a much smaller signal relative to the delayed 'activity crest.' Therefore, naturally, fMRI researchers had previously used the greater 'activity crest' to map the exact location of electrical activity.)
However, Dae-Shik Kim, Timothy Duong, and Seong-Gi Kim from the Minnesota group report today in Nature Neuroscience that this 'activity crest' cannot be used to monitor the precise location of electrical activity with fMRI. The major finding of their report is that the exact location of 'firing' indeed corresponds to the location of the 'initial dip.' Utilization of this small signal enabled the first exact mapping of 'orientation columns' -- the microprocessors responsible for shape perception in early processing areas of the visual cortex.
The current Nature Neuroscience contains a News and Views article written by Amiram Grinvald, Hamutal Slovin and Ivo Vanzetta of the Weizmann Institute, in which they discuss the accomplishment achieved by the Minnesota team, and provide new data from optical imaging. Taken together, these articles suggest that by focusing on the 'initial dip,' fMRI will enable non-invasive mapping of cortical columns in human brain research as well.
Scientists believe that the pivotal improvement in MRI accuracy will greatly advance scientific research aimed at better understanding the fundamental mechanisms underlying human perception and higher cognitive functions. Additionally, it may have valuable significance in improving the capacity for early diagnosis and perhaps prevention of diverse mental disorders.
Prof. Grinvald, who holds the Helen and Norman Asher Professorial Chair in Brain Research, is head of the Murray H. and Meyer Grodetsky Center for Research of Higher Brain Functions and of the Wolfson Center for Applied Scientific Research in Functional Brain Imaging at the Weizmann Institute.
This study was supported by the German Israeli Foundation for Scientific Research and Development, the Horace W. Goldsmith Foundation, of New York and Ms. Margaret Enoch of New York.
The Weizmann Institute of Science is a major center of scientific research and graduate study located in Rehovot, Israel. Its 2,500 scientists, students and support staff are engaged in more than 1,000 research projects across the spectrum of contemporary science
Wrapping Up
Weizmann Institute Scientists reveal a mechanism for healthy nerve development, which may lead to new treatments for neurodegenerative diseases
In a host of neurological diseases, including multiple sclerosis (MS) and several neuropathies, the protective covering surrounding the nerves – an insulating material called myelin – is damaged. Scientists at the Weizmann Institute of Science have now discovered an important new line of communication between nervous system cells that is crucial to the development of myelinated nerves – a discovery that may aid in restoring the normal function of the affected nerve fibers.
Nerve cells (neurons) have long, thin extensions called axons that can reach up to a meter and or more in length. Often, these extensions are covered by myelin, which is formed by a group of specialized cells called glia. Glial cells revolve around the axon, laying down the myelin sheath in segments, leaving small nodes of exposed nerve in between. More than just protection for the delicate axons, the myelin covering allows nerve signals to jump instantaneously between nodes, making the transfer of these signals quick and efficient. When myelin is missing or damaged, the nerve signals can’t skip properly down the axons, leading to abnormal function of the affected nerve and often to its degeneration.
In research published recently in Nature Neuroscience, Weizmann Institute scientists Prof. Elior Peles, graduate student Ivo Spiegel and their colleagues in the Molecular Cell Biology Department and in the United States, have now provided a vital insight into the mechanism by which glial cells recognize and myelinate axons.
How do the glial cells and the axon coordinate this process? The Weizmann Institute team found a pair of proteins that pass messages from axons to glial cells. These proteins, called Necl1 and Necl4, belong to a larger family of cell adhesion molecules, so called because they sit on the outer membranes of cells and help them to stick together. Peles and his team discovered that even when removed from their cells, Necl1, normally found on the axon surface, and Necl4, which is found on the glial cell membrane, adhere tightly together. When these molecules are in their natural places, they not only create physical contact between axon and glial cell, but also serve to transfer signals to the cell interior, initiating changes needed to undertake myelination.
The scientists found that production of Necl4 in the glial cells rises when they come into close contact with an unmyelinated axon, and as the process of myelination begins. They observed that if Necl4 is absent in the glial cells, or if they blocked the attachment of Necl4 to Necl1, the axons that were contacted by glial cells did not myelinate. In the same time period, myelin wrapping was already well under way around most of the axons in the control group.
'What we’ve discovered is a completely new means of communication between these nervous system cells,' says Peles. 'The drugs now used to treat MS and other degenerative diseases in which myelin is affected, can only slow the disease, but not stop or cure it. Today, we can’t reverse the nerve damage caused by these disorders. But if we can understand the mechanisms that control the process of wrapping the axons by their protective sheath, we might be able to recreate that process in patients.'
Prof. Elior Peles's research is supported by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation; the Nella and Leon Benoziyo Center for Neurological Diseases; the Kekst Family Center for Medical Genetics; The David and Fela Shapell Family Center for Genetic Disorders; the Wolgin Prize for Scientific Excellence; the National Institutes of Health (NIH); the National Multiple Sclerosis Society; the US-Israel Binational Science Foundation; and the Israel Science Foundation.
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.
http://wis-wander.weizmann.ac.il/, and are also available at http://www.eurekalert.org/.