
Lucio Frydman devotes much of his time to one of the oldest traditions of humankind - making tools and using them to explore the world that surrounds us. But things have changed quite a bit since early blade-shaping, fire-making and glass-blowing attempts. “The goal is to craft ever-sensitive recording methods for peering into the heart of matter,” says Frydman, a professor in the Institute’s Chemical Physics Department.
The tool he is working to perfect is called nuclear magnetic resonance (NMR), which, since its development in the 1940s, has proven invaluable to studying the structure of molecules, designing new drugs and even exploring the human brain (see box).
The key to NMR is magnetism. All matter is made up of atoms, and each atom contains a nucleus. When exposed to electromagnetic radiation, nuclei “get excited” - they start spinning, creating their own electromagnetic sounds. The nucleus of each type of atom emits a sound that is entirely unique. The challenge facing NMR scientists is to study the dispersion patterns of the sound waves produced by the excited molecules - in other words, to work backward from the resulting “nuclear symphony” to reconstruct a precise three-dimensional picture of the molecule.
It’s not an easy task. To date, scientists wishing to obtain a full NMR picture of complex molecules needed to perform numerous measurements: hundreds or thousands of one-dimensional scans, which could only be performed one after the other. These scans were then combined to create a unified three-dimensional picture. While a single scan took a fraction of a second, the multidimensional procedures leading to the overall picture of the molecule could last several hours or even days.
Now Frydman and his team have developed an approach called ultrafast multidimensional NMR that significantly expedites the analysis of the electromagnetic sounds produced, making it possible to acquire complete multidimensional NMR spectra within a fraction of a second.
Their approach, described in the Proceedings of the National Academy of Sciences (PNAS), USA, “slices up” the molecular sample into numerous thin layers and then simultaneously performs all the measurements required on every one of these slices. The protocol then integrates these measurements according to their precise location, generating an image that amounts to a full multidimensional spectrum from the entire sample.
Thanks to the speed with which the new method collects the data, scientists will now be able to observe rapid changes taking place in molecules, such as the folding of proteins. In a sense, the method amounts to a transition from taking NMR “stills” to making NMR “movies.”
Frydman’s team is applying the techniques they’ve developed to study a variety of molecular structures and their potential interactions with their surroundings. One of their projects examines how nucleic acids and other biological molecules bind to metal ions (metals play vital roles in a range of systems, including serving as catalysts, which speed up reactions or enable them to occur). Additional projects aim to facilitate the efficient use of NMR in pharmaceutical and biochemical studies.
The team’s approach should make it possible to examine molecular and biological systems with a much higher time resolution than was previously possible, yielding detailed insights into molecular-level interactions. These, in turn, might advance the design of new drugs as well as industrial catalysts and novel materials.
Contributing to this research were Dr. Adonis Lupulescu of the Chemical Physics Department and Dr. Tali Scherf of Chemical Services at the Weizmann Institute of Science.
Prof. Frydman’s research is supported by the Fritz Haber Center for Physical Chemistry; the Henri Gutwirth Fund for Research; the estate of Ilse Katz, Switzerland; the Philip M. Klutznick Fund for Research; the Minerva Stiftung Gesellschaft fuer die Forschung m.b.H.; and the Abraham and Sonia Rochlin Foundation.
First magnetic steps
Research using nuclear magnetic resonance dates back to the 1940s, when Felix Bloch of Stanford University and Harvard’s Edward Purcell first applied NMR to examine solids and liquids, earning themselves the 1952 Nobel Prize in Physics. Weizmann Institute scientists Shlomo Alexander and Shaul Meiboom built one of the world’s first high-resolution NMR spectrometers in the early 1950s. They and other Institute scientists later developed an NMR approach for measuring the behavior of molecules in crystals and solutions. Since then NMR and its daughter technique, MRI, have evolved into what is arguably the most commonly used analytical and diagnostic tool in scientific research, spanning the fields of medicine, structural biology, pharmaceutical chemistry, condensed matter physics and earth sciences.
Making of a toolmaker
Argentinean-born Prof. Frydman received a Ph.D. in chemistry from the University of Buenos Aires. Following a postdoctoral period at the University of California, Berkeley he joined the faculty of the University of Chicago, where after seven years he became a full professor. He and his family settled in Rehovot, Israel, in 2001, when he joined the Institute’s Chemical Physics Department.
And why choose NMR research? “This field is unique in the way it combines quantum mechanical principles with instrumental and computational challenges,” says Frydman. “Moreover, its importance as a diagnostic tool in a variety of scientific fields means that there’s always a new question just waiting to be explored.”
A Rose by Any Other Name
A rose is a rose is a rose; but do we, the artist and the poet all see the same flower in the same way?
This age-old philosophical question has now been put to the test by scientists at the Weizmann Institute.
While no one can actually “get inside” the head of another, for neurobiologists, modern biological imaging methods such as fMRI are the next best thing. The f stands for “functional,” meaning that the magnetic images record changes in the brain’s blood flow while it is in the process of thinking or experiencing, responding to stimuli or performing set tasks, allowing scientists to accurately pinpoint the areas involved in each function.
To compare individual perceptions of visual experiences, Prof. Rafael Malach and Uri Hasson, along with their colleagues in the Neurobiology Department, showed volunteers a segment of a movie (in this case, the classic Western The Good, the Bad and the Ugly) while they were undergoing brain scans with fMRI.
The scans allowed the scientists to see which areas of the subjects’ brains were active during love scenes or gunfights. Because a movie offers a wealth of different visual stimuli - scenery, faces, action, etc. - the researchers were able to track the brains’ response to a rich, dynamic scene. A change in experimental stimuli turned up surprising results. Rather than showing the subjects carefully selected slides or photos - the typical visual stimuli used in such experiments - the researchers showed them a movie. Essentially, rather than presenting one type of stimulus and then looking for the response, the brain areas themselves were allowed to select their own fare from a smorgasbord of possibilities, and the scientists then took note of the brain’s selections.
What they found was a striking similarity between brain activity patterns in all the subjects; so much so that the patterns of one brain could be used to predict activity in other brains when viewing the same segment. “Despite our strong sense of individuality, such a high level of agreement among subjects implies that our brains ‘tick together’ when exposed to the same visual environment,” says Malach.
Interestingly however, the brain scans also revealed that within an individual brain, different regions are active in viewing different parts of the movie. Because each area is activated by a specific kind of visual cue, it only picks up on those bits that “speak” directly to its specialized preference. For instance, a region known to be involved with face recognition lights up only when close-ups appear on the screen, while scenery elicits a response from another part of the brain that helps us navigate in three-dimensional space. The scientists noted a third area that seemed to be activated when actors performed delicate hand motions. They believe this last area may be part of a network of brain regions used to understand the actions and intentions of others. “While you perceive a single, whole movie, different regions of your brain are each processing a private motion picture of their own,” says Malach. “The unified percept you experience is, in fact, the result of a tremendous ‘jam session’ played by many different, highly specialized brain areas.”
Prof. Malach’s research is supported by the Nella and Leon Benoziyo Center for Neurosciences; the Murray H. and Meyer Grodetsky Center for Research of Higher Brain Functions; the Norman and Helen Asher Center for Brain Imaging; the Edith C. Blum Foundation Inc.; the Mary Ralph Designated Philanthropic Fund and the James S. McDonnell Foundation.